Расчет надежности схемы
где - L - интенсивность отказов всей схемы.
ln - интенсивность отказов элементов схемы.
N - количество элементов схемы.
L=l1·N1+l2·N2+l3·N3+l4·N4+l5·N5+l6·N6+l7·N7+l8·N8+l9·N9+l10·N10+l11·N11+l12··N12+l13·N13+l14·N14+l15·N15=0,6·10-6·2+2,5·10-6·1+0,44·10-6·9+0,02·10-6·178+ +2,5·10-6·2+0,3·10-6·7+0,04·10-6·30+0,0001·10-6·193+1·10-6·178+4·10-6·3+ +0,0005·10-8·1+2·10-6·1+0,005·10-6·68+2,5·10-6·2+1,1·10-6·14=1,2+2,5+3,96+3,56+5+ +2,1+1,2+0,0193+178+12+0,000005+2+0,34+5+15,4=232,279305·10-6 1/ч.
где l1 - интенсивность отказов германиевых транзисторов
N1 - количество германиевых транзисторов
l2 - интенсивность отказов интегральных микросхем
N2 - количество интегральных микросхем
l3 - интенсивность отказов керамических монолитных конденсаторов
N3 - количество керамических монолитных конденсаторов
l4 - интенсивность отказов контактных площадок
N4 - количество контактных площадок
l5 - интенсивность отказов кремниевых диодов
N5 - количество кремниевых диодов
l6 - интенсивность отказов кремниевых транзисторов
N6 - количество кремниевых транзисторов
l7 - интенсивность отказов металлодиэлектрических резисторов
N7 - количество металлодиэлектрических резисторов
l8 - интенсивность отказов отверстий
N8 - количество отверстий
l9 - интенсивность отказов пайки
N9 - количество пайки
l10 - интенсивность отказов переменных пленочных резисторов
N10 - количество переменных пленочных резисторов
l11 - интенсивность отказов печатной платы
N11 - количество печатной платы
l12 - интенсивность отказов пленочных подстроечных резисторов
N12 - количество пленочных подстроечных резисторов
l13 - интенсивность отказов проводников
N13 - количество проводников
l14 - интенсивность отказов разъемов
N14 - количество разъемов
l15 - интенсивность отказов электролитических конденсаторов
N15 - количество электролитических конденсаторов
Найдем среднюю наработку до первого отказа по формуле:
Тср=1/L=1/ 232,279305·10-6 =4305,16 час |
где Тср - средняя наработка до первого отказа.
Далее найдем вероятность безотказной работы:
Р( t )=1-L·tср=1-232,279305·10-6·500=0,89 |
где Р( t ) - вероятность безотказной работы
tср - среднее время нормальной работы изделия
Заключение
В последнее время научно-исследовательские и производственные предприятия радиотехнической и электронной промышленности передовых стран мира тратят много сил и средств на отыскание путей уменьшения габаритов и массы радиоэлектронной аппаратуры. Работы эти получают поддержку потому, что развитие многих отраслей науки и техники, таких как космонавтика, вычислительная техника, кибернетика, бионика и другие, требуют исключительно сложного электронного оборудования. К этому оборудованию предъявляются высокие требования, поэтому аппаратура становится такой сложной и громоздкой, что требования высокой надежности и значительного уменьшения габаритов и массы приобретают важнейшее значение. Особенно эти требования предъявляются ракетной технике. Известно, что для подъема каждого килограмма массы аппаратуры космического корабля необходимо увеличить стартовую массу ракеты на несколько сотен килограммов. Чтобы удовлетворить эти требования, необходимо миниатюризировать аппаратуру. Это достигается несколькими методами конструирования радиоэлектронной аппаратуры.
При микромодульном методе конструирования повышение плотности монтажа достигается за счет применения специальных миниатюрных деталей и плотного их монтажа в микромодуле. Благодаря стандартным размерам микромодули размещаются в аппаратуре с минимальными промежутками.
Немного больше о технологиях >>>
Роль нанотехнологий в обществе будущего
«Мы
знаем, что белому человеку непонятны наши традиции… Он относится к земле как к
врагу, а не как к брату, поэтому он движется дальше, когда покорит часть ее… Он
крадет землю у своих детей, и ему все равно. Он относится к своей матери —
земле так, как будто ее можно продавать ...
Изо всех лошадиных сил
В 1765 году англичанин Джеймс Уатт изобрел паровую
машину, положив начало длинной цепочке инноваций в двигателестроении. В 1860
году французский механик Этьен Ленуар разрабатывает первый поршневой двигатель
внутреннего сгорания. В 1889 году швед Карл Густав Патрик Лаваль, соверш ...