Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Монослой на поверхности воды

Оказывается, у достаточно сложных молекул имеются свои пристрастия. Например, одни органические молекулы «любят» контактировать с водой, а другие избегают такого контакта, «боятся» воды. Их и называют соответственно – гидрофильными и гидрофобными молекулами.

Существуют, однако, еще и молекулы вроде русалок – одна их часть гидрофильная, а другая гидрофобная. Молекулы-русалки должны решить для себя проблему: быть им в воде или не быть (если мы пытаемся приготовить их водный раствор). Найденное решение оказывается поистине соломоновым: конечно же, они будут в воде, но только наполовину. Молекулы-русалки располагаются на поверхности воды так, что их гидрофильная головка (обладающая, как правило, разделенными зарядами – электрическим дипольным моментом) опущена в воду, а гидрофобный хвост (обычно это углеводородная цепочка) высовывается наружу в окружающую газообразную среду (рис.1). Положение русалок несколько неудобное, зато оно удовлетворяет одному из основных принципов физики систем из многих частиц – принципу минимума свободной энергии и не противоречит нашему опыту.

Рис. 1. Молекула стеариновой кислоты – типичная «русалка». При образовании мономолекулярного слоя на поверхности воды гидрофильные головки молекул опущены в воду, а гидрофобные хвосты торчат вертикально над водной поверхностью.

Не следует думать, что склонностью к расположению сразу в двух фазах (водной и неводной), так называемой амфифильностью, обладают лишь какие-то экзотические вещества. Напротив, методами химического синтеза можно, по крайней мере в принципе, «пришить» гидрофобный хвост практически к любой органической молекуле, так что ассортимент молекул-русалок исключительно широк, и все они могут иметь самое разнообразное предназначение.

Рис. 2. Ванна и весы Ленгмюра для измерения поверхностного давления монослоя. Под действием внешней силы плавучий барьер движется вправо и сжимает монослой. Давление на поплавок уравновешивается грузом.

Структурой мономолекулярной пленки на поверхности воды можно управлять с помощью подвижного барьера, сжимающего монослой. Это делается в так называемой ленгмюровской ванне, где усилие, передаваемое от барьера к монослою, измеряется путем компенсации приложенной силы с помощью специально сконструированных весов (рис.2). Давайте, например, повторим такой опыт вместе с Ленгмюром, то есть будем давить с торца на мономолекулярный слой, скажем, стеариновой кислоты при заданной температуре. Пока пленка не сплошная, барьер идет легко и площадь занятой ею поверхности убывает быстро, а сила нарастает медленно. Этот этап сжатия пленки полностью аналогичен сжатию трехмерного газа в цилиндре с поршнем. С уменьшением площади монослоя, и следовательно, «посадочной площадки» одной молекулы, все они начнут касаться друг друга и образуют плотный монослой. Теперь усилие на пленку придется заметно увеличить (рис.3), и постепенно слой проходит через последовательность двухмерных состояний, а именно жидкую, жидкокристаллическую и твердую фазы. Для жидкой фазы характерно практически беспорядочное расположение углеводородных хвостов молекул; в жидкокристаллической фазе эти хвосты, пока еще гибкие, начинают ориентироваться в среднем перпендикулярно – как говорят, вдоль нормали к пленке, а в твердой фазе хвосты становятся жесткими, и все звенья углеводородной цепи упаковываются в кристаллическую структуру. Монослой становится похожим на льдину толщиной в одну молекулу.

Перейти на страницу: 1 2

Немного больше о технологиях >>>

Явления, обусловленные движением Земли относительно мирового эфира
Эйнштейн предполагал, что все попытки обнаружить движение Земли относительно мирового эфира оказались безуспешными. Безуспешными оказались попытки обнаружить «эфирный ветер», возникающий при движении Земли относительно мирового эфира вследствие полного увлечения эфира атмосферо ...

Оборудование и технология эхо-импульсного метода ультразвуковой дефектоскопии
Двадцать первый век - век атома, покорения космоса, радиоэлектроники и ультразвука. Наука об ультразвуке сравнительно молодая. Первые лабораторные работы по исследованию ультразвука были проведены великим русским ученым-физиком П. Н. Лебедевым в конце XIX, а затем ультразвуком ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512