Топливные элементы
Усложняет использование ТЭ то, что для них топливо необходимо «готовить». Для ТЭ получают водород путем конверсии органического топлива или газификации угля. Поэтому структурная схема электростанции на ТЭ, кроме батарей ТЭ, преобразователя постоянного тока в переменный (см гл. 3) и вспомогательного оборудования включает блок получения водорода.
Два направления развития ТЭ
Существуют две сферы применения ТЭ: автономная и большая энергетика.
Для автономного использования основными являются удельные характеристики и удобство эксплуатации. Стоимость вырабатываемой энергии не является основным показателем.
Для большой энергетики решающим фактором является экономичность. Кроме того, установки должны быть долговечными, не содержать дорогих материалов и использовать природное топливо при минимальных затратах на подготовку.
Наибольшие выгоды сулит использование ТЭ в автомобиле. Здесь, как нигде, скажется компактность ТЭ.При непосредственном получении электроэнергии из топлива экономия последнего составит порядка 50%.
Впервые идея использования ТЭ в большой энергетике была сформулирована немецким ученым В.Освальдом в 1894 году. Позднее получила развитие идея создания эффективных источников автономной энергии на основе топливного элемента.
После этого предпринимались неоднократные попытки использовать уголь в качестве активного вещества в ТЭ.В 30-е годы немецкий исследователь Э.Бауэр создал лабораторный прототип ТЭ с твердым электролитом для прямого анодного окисления угля. В это же время исследовались кислородно-водородные ТЭ.
В 1958 году в Англии Ф.Бэкон создал первую кислородно-водородную установку мощностью 5кВт. Но она была громоздкой из-за использования высокого давления газов (2 .4МПа).
С 1955 года в США К.Кордеш разрабатывал низкотемпературные кислородно-водородные ТЭ.В них использовались угольные электроды с платиновыми катализаторами. В Германии Э.Юст работал над созданием неплатиновых катализаторов.
После 1960 года были созданы демонстрационные и рекламные образцы. Первое практическое применение ТЭ нашли на космических кораблях «Аполлон». Они были основными энергоустановками для питания бортовой аппаратуры и обеспечивали космонавтов водой и теплом.
Основными областями использования автономных установок с ТЭ были военные и военно-морские применения. В конце 60-х годов объем исследований по ТЭ сократился, а после 80-х вновь возрос применительно к большой энергетике.
Фирмой VARTA разработаны ТЭ с использованием двухсторонних газодифузионных электродов. Электроды такого типа называют «Янус». Фирма Siemens разработала электроды с удельной мощностью до 90Вт/кг. В США работы по кислородно-водородным элементам проводит United Technology Corp.
В большой энергетике очень перспективно применение ТЭ для крупномасштабного накопления энергии, например, получение водорода (см. гл. 1). Возобновляемые источники энергии (солнце и ветер) отличаются рассредоточеностью (см гл. 4). Их серьезное использование, без которого в будущем не обойтись, немыслимо без емких аккумуляторов, запасающих энергию в той или иной форме.
Проблема накопления актуальна уже сегодня: суточные и недельные колебания нагрузки энергосистем заметно снижают их эффективность и требуют так называемых маневренных мощностей. Один из вариантов электрохимического накопителя энергии – топливный элемент в сочетании с электролизерами и газгольдерами*.
* Газгольдер [газ + англ. holder держатель] – хранилище для больших количеств газа.
Первое поколение ТЭ
Наибольшего технологического совершенства достигли среднетемпературные ТЭ первого поколения, работающие при температуре 200 .230°С на жидком топливе, природном газе либо на техническом водороде*. Электролитом в них служит фосфорная кислота, которая заполняет пористую углеродную матрицу. Электроды выполнены из углерода, а катализатором является платина (платина используется в количествах порядка нескольких граммов на киловатт мощности).
* Технический водород – продукт конверсии органического топлива, содержащий незначительные примеси окиси углерода.
Немного больше о технологиях >>>
Каталитический этюд
Современное учение о катализе можно
уподобить гигантскому живописному полотну, на котором с большого расстояния
различимы два частично пересекающихся сюжета. Первый включает процессы, с
помощью которых химики стремятся производить то, что давно умела делать
природа. Речь идет в ...
Красота – язык сверхсознания
Красота
широко разлита в окружающем нас мире. Красивы не только произведения искусства.
Красивыми могут быть и научная теория, и отдельный научный эксперимент. Мы
называем красивыми прыжок спортсмена, виртуозно забитый гол, шахматную партию.
Красива вещь, изготовленная рабочим ...