Волновое уравнение не имеет единственного решения
Применение результатов
Полученное доказательство служит обоснованию метода получения новых решений, описанного в [2], [3] и др. статьях авторов. Оно имеет прямую связь с калибровкой решений в электродинамике [2], [3].
Пусть мы имеем неоднородное волновое уравнение
с соответствующими начальными условиями: v=φ(x) и ∂v/∂t=ψ(x) при t=0.
Представим решение этого уравнения в форме (2): v=u+f.
Оставим в левой части волнового уравнения только члены, зависящие от u. Как и в предыдущем случае мы могли бы задать явный вид функции f (как говорят: «взяв ее с потолка») и получить решение неоднородного уравнения. Но можно поступить иначе. Мы можем наложить на f некоторое условие. Например, мы можем потребовать, чтобы функция f удовлетворяла уравнению Пуассона:
∂2f / ∂x2=F(x;t).
Если решение этого уравнения существует (функция F(x:t) интегрируема), то уравнение для функции u определено и определены начальные условия задачи Коши: u=φ(x) –f(x;0) и ∂u/∂t=ψ(x)–∂f/∂t при t=0.
Такой метод построения второго решения по существу является калибровкой решения. Иными словами, мы ищем решение как сумму выражений, имеющих различную функциональную зависимость от координат и времени (запаздывающие потенциалы, мгновеннодействующие потенциалы, потенциалы, удовлетворяющие уравнению теплопроводности и т.д.) Этот метод описан и используется в работах [2], [3].
Следствия, вытекающие из отсутствия единственности решения для электродинамики весьма существенны. Калибровочная (градиентная) инвариантность не имеет места. В общем случае калибровка Лоренца уравнений Максвелла дает решения, отличающиеся от решений в кулоновской калибровке [2], [3]. Однако существует важный частный случай, когда эти калибровки эквивалентны. Он рассмотрен в [4].
Остается добавить, что для уравнений параболического типа (уравнение теплопроводности, уравнение Шредингера и др.) можно доказать аналогичную теорему. Более того, возможно, что нарушение единственности решения имеет место также для уравнений эллиптического типа (например, для задач Дирихле, Неймана и др.).
Немного больше о технологиях >>>
Система качественных показателей для оценки достижения идеальности ТС
Общая структура Технической Системы:
ЗАТРАТЫ (вход) - ТС (процессор) - ГПФ
(выход)
Идеал ТС: Достижение ГПФ при сумме затрат
стремящейся к нулю.
...
Гравитация с точки зрения общей теории поля
В
настоящее время написано столько, что невозможно произнести или написать слово
без мнимого подозрения на покушение чьего-либо «оригинала» защищенного
патентным правом. Однако, не следует доводить до абсурда индивидуальный
приоритет пользования чего бы-то ни было: идеи, способ ...