Цивилизация богов. Прогноз развития науки и техники в 21-м столетии
Интенсивно осуществлялась разработка улучшенных фотокатализаторов, воплощающая в натуральном виде результаты компьютерного моделирования и конструирования. Построенные на расчетных принципах, эти химические соединения осуществляли разложение воды на основе не существующих в природе фотохимических реакций. Создание эффективных искусственных фотокатализаторов для производства водорода из воды требовало множества сложных вычислений, и являлось достаточно трудоемким делом. В конце десятилетия произошел качественный скачок в технологиях компьютерного конструирования, что привело к созданию целого семейства эффективных фотокатализаторов. Искусственные химические соединения представляли собой сложные молекулы с развитой пространственной структурой, которые максимально эффективно осуществляли отрыв атома водорода от молекулы воды. Эффект отрыва основывался на создании вокруг атома водорода локального пространства с расчетным распределением электронной плотности и на использовании энергии фотонов. Новые фотокатализаторы имели коэффициент полезного действия всего несколько процентов, что было явно недостаточно, однако они имели и существенные достоинства, такие как инертность к большинству химических соединений, долговечность, возможность использования энергии низкоэнергетических фотонов (красного света). Дальнейшее совершенствование таких фотокатализаторов имело хорошие перспективы для производства промышленных количеств водорода в холодное время года, а также в утренние и вечерние часы, когда солнечный свет теряет свою интенсивность и высокоэнергетическую составляющую.
В результате научных и технических достижений последних лет сырьевая база мировой энергетики начала менять свою структуру и смещаться в сторону использования молекулярного водорода. Фотокаталитический способ получения молекулярного водорода из воды имел кроме известного экологического преимущества (продуктом горения водорода в кислороде является вода) еще один важный положительный аспект. При использовании свежеполученного водородного горючего солнечная энергия, запасенная в молекулах водорода, аккумулировалась и выделялась в окружающую среду в реальном времени. Напротив использование таких энергоресурсов как газ, нефть, уголь, торф приводило к выделению в окружающую среду тепловой энергии, аккумулированной миллионы лет назад, что нарушало сложившийся тепловой баланс планеты. Таким образом, массовое использование водорода в энергетике исключало дополнительный нагрев окружающей среды, как это было в случае использования природных энергоносителей, и приводило лишь к незначительному перераспределению солнечной энергии в пространстве и времени.
Использование водорода в энергетике было в целом оправдано с экологической точки зрения. Однако существовали и некоторые негативные моменты. Одним из них являлось неизбежное загрязнение атмосферы окислами азота, как следствие применения в качестве окислителя не чистого кислорода, а неподготовленного воздуха. Для решения этой проблемы требовалось разработать дополнительные системы обеспечения водородных энергетических установок очищенным кислородом. В свою очередь это требовало разработки новых и совершенствования существующих мембранных технологий.
Кроме этого требовалось разработать и создать множество новых машин, механизмов и технологий, решить проблемы безопасности при хранении, транспортировке и использовании водородного горючего. Нельзя сказать, что это были неисследованные темы и направления. Давно уже велись работы по переводу транспорта, авиации, энергетики на водородное горючее. Появление возможности производить дешевый водород ускорило эти исследования и работы. В краткие сроки учеными были предложены несколько новых технологий хранения водорода. В качестве базовой была принята технология хранения водорода в межмолекулярных пространствах химических соединений. Для этого использовались как природные цеолиты, подвергнутые улучшению, так и новые пористые материалы молекулярной сборки. Данные материалы были химически нейтральны по отношению к водороду и одновременно являлись сосудом, препятствующим самопроизвольному выходу легкого газа в окружающую среду. Также для хранения водорода в химически связанном виде использовались сплавы на основе лантана, титана, никеля и других металлов.
Немного больше о технологиях >>>
Механика. Античность и эллинский период
Исторический экскурс в прошлое физики, вне
всякого сомнения, позволяет лучше понять логику формирования и развития этой
науки, приведшую к современному ее состоянию. Нам представляется, что понимание
причины возникновения физики, ее изначальных целей, знакомство с этапами ее
ра ...
Основные концепции классической физики XIX века
Становление классического естествознания
Социально-экономические
и политические условия развития науки в XIX веке в разных странах не были
одинаковыми. И хотя эти условия не всегда благоприятствовали развитию науки,
для XIX века в целом характерен бурный рост научных ...