Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Жгутиковый мотор

Бактерия Esherichia Coli (E. Coli) - мечта нанотехнологов. Это почти готовая "база" для будущих нанобиороботов. Чтобы плавать, она с помощью специальных биологических электромоторов вращает свои жгутики. Когда жгутики начинают синхронно вращаться против часовой стрелки, они сплетаются в единый пучок, который образует своеобразный пропеллер. Вращение пропеллера создает силу, заставляющую бактерию двигаться почти по прямой линии. После того как направление вращения жгутиков изменяется на противоположное, пучок расплетается и бактерия останавливается, вместо поступательного движения она начинает хаотически вращаться, ее ориентация изменяется.

Рис. 9. Строение жгутикового мотора

Как и протонные АТФсинтазы, электромоторы бактерий являются устройствами, которые в качестве источника энергии используют разность протонных потенциалов на цитоплазматической мембране. Принципы работы АТФсинтазы и бактериального мотора одинаковы, хотя сами эти конструкции различаются по своим размерам и устройству (см. рис. 9, 10). Можно с уверенностью сказать, что бактериальный мотор - аналог машины постоянного тока, созданной человеком.

Рис. 10. Структурная модель, принцип работы и микрофотография жгутикового мотора

Электромоторы бактерий работают очень эффективно. Бактерии плавают со средней скоростью около 25 мкм/с, но некоторые виды могут двигаться поступательно со скоростью больше 100 мкм/с. Это означает, что за одну секунду бактерия перемещается на расстояние, которое в десять или больше раз превышает ее собственную длину. Любопытно провести аналогию с движением систем макроскопических размеров. Например, если бы пловцы преодолевали за одну секунду расстояние, на порядок превышающее их собственный рост, то стометровую дорожку плавательного бассейна они бы проплывали приблизительно за 5 с. Обычно электромотор бактерий вращается со скоростью, достигающей 50-100 оборотов в секунду, однако у некоторых видов бактерий скорость вращения превышает 1000 оборотов в секунду. Электромоторы, которые могут так быстро вращать жгутики бактерий, очень экономичны - они потребляют не более 1% энергетических ресурсов бактериальной клетки.

Роберт Фрайтас и Адриано Кавальканти, одни из ведущих мировых ученых в области наномедицины, неоднократно заявляли, что именно подобные жгутиковые моторы будут наиболее эффективны в наноробототехнике.

Заключение

Итак, как мы видим, на первых порах нет необходимости разрабатывать какие-либо "продвинутые" актюаторы, как это делал Эрик Дрекслер в "Наносистемах". Для построения первых примитивных наносистем достаточно и этих готовых "кирпичиков", которые миллионы лет эффективно работают в природе. Но, как только можно будет конструировать произвольные структуры из алмазоида с атомарной точностью, для многих наноустройств такие моторы будут непригодны.

У всех рассмотренных выше биологических моторов есть ряд недостатков. Важнейший недостаток - малая степень управляемости. То есть, если вы захотите использовать тот же АТФазный мотор для управления наноманипулятором, задать перемещение ротора в 10-20° будет практически невозможно, так как дискретность работы мотора - 120°. Конечно, можно воспользоваться редукторами и прочими преобразователями движения, но это усложнит конструкцию и увеличит размер устройства. Также один из недостатков биомоторов - условие работы в жидкой среде, что существенно ограничивает их круг применения.

Но все-таки, повторюсь, все вышеперечисленные моторы как нельзя лучше подходят по характеристикам для современных исследований в области нанотехнологий и нанопроизводства. Так что в течение следующих 10-15 лет им не предвидится альтернативы.

Немного больше о технологиях >>>

Причинность и взаимодействие в физике
Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах ...

Преобразователь разности давлений Сапфир-22ДД
Описание контура. Назначение. Технические данные. Устройство и работа. Техническое обслуживание. Монтаж прибора. Настройка и проверка. Основные неисправности. Техника безопасности. Сапфир-22ДД-Ex (датчик расхода) В химической промышленности комплексной механизац ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512