Постановка.
число единиц ресурса i-го вида, число работ множества
Прежде чем дать математическую формулировку задачи, введем определения:
1. Под ресурсным графом мы понимаем сетевую модель, отображающую многопроектную разработку с учетом ресурсов.
2. Под установлением между работами связей по ресурсам мы понимаем указание для j-й работы множества ресурсных условий Zj ,
3. Путь, имеющий продолжительность Tm , мы называем критическим путем сетевого графика для m-го проекта без учета ресурсов.
4. Путь, имеющий продолжительность мы называем критическим путем сетевой модели многопроектной разработки без учета ресурсов. Сетевая модель в данном случае состоит из совокупности сетевых графиков.
5. Путь ресурсного графа, имеющий продолжительность , мы называем. критическим.
. . V(t0)известно( состояние системы в момент времени t0).
(1) для любого
(2)
(3)
(4) целое,
(5)
При заданном начальном состоянии системы V(t0) в момент времени t0 необходимо найти в области, определяемой ограничениями: (2)(5), оптимальную траекторию движения(под оптимальной траекторией движения системы мы понимаем экстремальный граф, параметры которого для любого kобеспечивают максимальное значение функции (1)).
Положение j-й работы в графе (1) определяется указанием множества ресурсных условий Zj , . Граф(1) для каждого решающего результата включает только одну альтернативу.
. Обоснованность критерия (1) следует из определения ресурсов нескладируемого типа, которые отпускаются порциями ?квантами¦.Для них характерно то, что неиспользованная или неэффективно использованная часть каждой порции в каждый момент времени пропадает и не переносится на другое время.
Физически критерий (1) означает, что число выполненных работ с учетом их весовых коэффициентов за любой интервал времени должно быть максимальным. Согласно ограничению (2) у-я работа не может начаться раньше окончания своих условий. Для начала любой работы необходимо, чтобы к данному моменту времени были выполнены технологические условия а также свободны ресурсы, обеспечивающие ее выполнение. Ресурсы могут переходить с других работ, которые также для данной работы являются условиями
Система функционирует в дискретном времени и ее состояние в каждый момент определяется набором числовых параметров: ni , Zj,
Принимаются следующие допущения: 1) каждая работа может выполняться с переменной интенсивностью использования ресурсов; 2) выполнение работ может прерываться, даже если они не закончены. Они будут завершены позднее.
. В [17] рассматривается случай, когда каждая работа может производиться с постоянной интенсивностью использования ресурсов, и объем работы, выполняемой в единицу времени является случайной величиной.
Для решения сформулированной задачи предложена процедура типа динамического программирования, cогласно которой состояние системы изменяется в соответствии с одношаговой функцией переходов.
Cтроится последовательность технологических комбинаций, каждая из которых для каждого решающего результата включает одну возможность развертывания проекта или одну альтернативу с заданной вероятностью. Распределение ресурсов для каждой технологической комбинации осуществляется по одной и той же схеме, которая приводится ниже. Результатом решения является экстремальный граф, определяемый распределением ресурсов, что создает предпосылки для. расчета вероятностей конечных исходов, а также критических путей обычным образом.
Немного больше о технологиях >>>
Об ориентационной поляризации спиновых систем
В
одной из наших предыдущих статей, посвященных термодинамике спиновых систем,
была выявлена несостоятельность попыток свести к теплообмену процессы
установления единой ориентации противоположно направленных ядерных спинов [1].
Несколько позднее было показано, что процессы упор ...
Методология науки
«Эксперимент не может подтвердить теорию,он
может лишь опровергнуть ее».
А.Эйнштейн
Во все времена задача науки была неизменна -
изучение мироздания с целью выявления существующих закономерностей, что само по
себе уже предполагает существование таких закономерностей и поз ...