Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Кислотно-основные буферные системы и растворы

СОО- СООН

R – СН + Н+ ® R – СН

N+Н3 N+Н3

Количество слабой кислоты при это незначительно увеличивается, а солевой формы белка – эквивалентно уменьшается. Поэтому рН остается практически постоянным.

При добавлении щелочи к этому буферному раствору ионы Н+, связанные в "белке – кислоте", высвобождаются и нейтрализуют добавленные ионы ОН-:

СООН СОО-

R – СН + ОН- ® R – СН + Н2О

N+Н3 NН2

Количество солевой формы белка при этом незначительно увеличивается, а "белка – кислоты" – эквивалентно уменьшается. И поэтому рН практически не изменится.

Таким образом, рассмотренные системы показывают, что буферное действие раствора обусловлено смещением кислотно-основного равновесия за счет связывания добавляемых в раствор ионов Н+ и ОН- в результате реакции этих ионов и компонентов буферной системы с образованием малодиссоциированных продуктов.

В основе расчета рН буферных систем лежит закон действующих масс для кислотно-основного равновесия.

Для буферной системы 1-го типа, например, ацетатной, концентрацию ионов Н+ в растворе легко вычислит, исходя из константы кислотно-основного равновесия уксусной кислоты:

СН3СООН Û СН3СОО- + Н+; (рКа = 4, 8)

Ка=

[ Н+] [ СН3СОО- ]

(1)

[ СН3СООН]

Из уравнения (1) следует, что концентрация водород-ионов равна

[ Н+] = Ка

[ СН3СООН ]

(2)

[ СН3СОО-]

В присутствии второго компонента буферного раствора – сильного электролита СН3СООNa кислотно-основное равновесие уксусной кислоты СН3СООН сдвинуто влево (принцип Ле Шателье). Поэтому концентрация недиссоциированных молекул СН3СООН практически равна концентрации кислоты, а концентрация ионов СН3СОО- - концентрации соли. В таком случае уравнение (2) принимает следующий вид:

[ Н+] = Ка

с (кислота)

(3)

с (соль)

где с (кислота) и с (соль) - равновесные концентрации кислоты и соли. Отсюда получают уравнение Гендерсона–Гассельбаха для буферных систем 1-го типа:

рН = рКа + lg

с (соль)

(4)

с (кислота)

В общем случае уравнение Гендерсона–Гассельбаха для буферных систем 1-го типа:

рН = рКа + lg

[сопряженное основание]

(5)

[ кислота ]

Для буферной системы 2-го типа, например, аммиачной, концентрацию ионов Н+ в растворе можно рассчитать, исходя из константы кислотно-основного равновесия сопряженной кислоты NH4+:

NH4+ Û NH3 + Н+; рКа = 9, 2;

Ка=

[NH3] [Н+]

(6)

[NH4+]

Отсюда получают уравнение Гендерсона–Гассельбаха для буферных систем 2-го типа:

рН = рКа + lg

с (основание)

(7)

с (соль)

Уравнение (7) для буферных систем 2-го типа можно представит и в следующем виде:

рН = 14 - рКв - lg

с (соль)

(8)

с (основание)

Значения рН буферных растворов других типов также можно рассчитать по уравнениям буферного действия (4), (7), (8).

Например, для фосфатной буферной системы НРО42-/Н2РО4-, относящейся к 3-му типу, рН можно рассчитать по уравнению (4):

рН = рКа (Н2РО4-) + lg

с (НРО42-)

с (Н2РО4-)

Перейти на страницу: 1 2 3 4 5 6

Немного больше о технологиях >>>

Эскиз к портрету биологической эволюции
История развития биологии сродни интеллектуальному детективу. Сначала – феноменологические дебри, несистемное накопление знаний, затем первые попытки систематизации. Когда стало ясно, что мир развивается, появились эволюционные гипотезы. Они отражали отдельные звенья этого слож ...

Система качественных показателей для оценки достижения идеальности ТС
Общая структура Технической Системы: ЗАТРАТЫ (вход) - ТС (процессор) - ГПФ (выход) Идеал ТС: Достижение ГПФ при сумме затрат стремящейся к нулю. ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512