Физические системы
Последние несколько десятилетий развития физики показали, что упорядоченность образуется в открытых системах (обменивающихся веществом и энергией с окружающей средой), находящихся в неравновесном состоянии. Такие системы обычно оказываются неустойчивыми, не всегда возвращаются к начальному состоянию. Им свойственно наличие бифуркационных точек, где нельзя однозначно предсказать дальнейшую эволюцию системы. При этом малое воздействие на систему может привести к значительным непредсказуемым последствиям (к раскрытию неустойчивости). В открытых системах, далеких от равновесия, возникают эффекты согласования, когда элементы системы кореллируют свое поведение на макроскопических расстояниях через макроскопические интервалы времени. В результате согласованного взаимодействия происходят процессы возникновения из хаоса определенных структур, их усложнения.
Собственно синергетика возникла из объединения трех направлений исследований: разработки методов описания существенно неравновесных структур, разработки термодинамики открытых систем и определения качественных изменений решений нелинейных дифференциальных уравнений.
Диссипативные системы
Открытые системы, в которых наблюдается прирост энтропии, называют диссипативными. В таких системах энергия упорядоченного движения переходит в энергию неупорядоченного хаотического движения, в тепло. Если замкнутая система (гамильтонова система), выведенная из состояния равновесия, всегда стремится вновь придти к максимуму энтропии, то в открытой системе отток энтропии может уравновесить ее рост в самой системе и есть вероятность возникновения стационарного состояния. Если же отток энтропии превысит ее внутренний рост, то возникают и разрастаются до макроскопического уровня крупномасштабные флюктуации, а при определенных условиях в системе начинают происходить самоорганизационные процессы, создание упорядоченных структур.
При изучении систем, их часто описывают системой дифференциальных уравнений. Представление решения этих уравнений как движения некоторой точки в пространстве с размерностью, равной числу переменных называют фазовыми траекториями системы. Поведение фазовой траектории в смысле устойчивости показывает, что существует несколько основных его типов, когда все решения системы в конечном счете сосредотачиваются на некотором подмножестве. Такое подмножество называется аттрактором. Аттрактор имеет область притяжения, множество начальных точек, таких, что при увеличении времени все фазовые траектории, начавшиеся в них стремяся именно к этому аттрактору. Основными типами аттракторов являются устойчивые предельные точки, устойчивые циклы (траектория стремится к некоторой замкнутой кривой) и торы (к поверхности которых приближается траектория). Движение точки в таких случаях имеет периодический или квазипериодический характер. Существуют также характерные только для диссипативных систем так называемые странные аттракторы, которые, в отличие от обычных не являются подмногообразиями фазового пространства (не вда-ваясь в подробности, замечу, что точка, цикл, тор, гипертор - являются) и движение точки на них является неустойчивым, любые две траектории на нем всегда расходятся, малое изменение начальных данных приводит к различным путям развития. Иными словами, динамика систем со странными аттракторами является хаотической.
Уравнения, обладающие странными аттракторами вовсе не являются экзотическими. В качестве примера такой системы можно назвать систему Лоренца, полученную из уравнений гидродинамики в задаче о термоконвекции подогреваемого снизу слоя жидкости.
Замечательным является строение странных аттракторов. Их уникальным свойством является скейлинговая структура или масштабная самоповторяемость. Это означает, что увеличивая участок аттрактора, содержащий бесконечное количество кривых, можно убедиться в его подобии крупномасштабному представлению части аттрактора. Объекты, обладающие способностью бесконечно повторять собственную струкуру на микроуровне называются фракталами.
Для динамических систем, зависящих от некоторого параметра, характерно, как правило, плавное изменение характера поведения при изменении параметра. Однако для параметра может иметься некоторое критическое (бифуркационное) значение, при переходе через которое аттрактор претерпевает качественную перестройку и, соответственно, резко меняется динамика систе-мы, например, теряется устойчивость. Потеря устойчивости происходит, как правило, переходом от точки устойчивости к устойчивому циклу (мягкая потеря устойчивости), выход траектории с устойчивого положения (жесткая потеря устойчивости), рождение циклов с удвоенным периодом. При дальнейшем изменении параметра возможно возникновение торов и далее странных аттракторов, то есть хаотических процессов.
Немного больше о технологиях >>>
Привычный способ восприятия времени - причина войн на планете
Мы знаем, что
прошлое и будущее существует только в нашем образном мышлении. Настоящее
измерить нечем и поэтому невозможно. Стрелки часов двигаются в пространстве, а
показывают время – не парадокс ли это? Наше тело – это часть пространства.
Осознавание линейных размеров собстве ...
Классификация методических средств технического творчества
Большое внимание уделяется в последние годы
вопросам технического творчества. При этом, техническое творчество не сводят к
кружкам "умелые руки", а понимают под этим процесс поиска новых идей
и решений в различных областях человеческой деятельности, учитывающий не толь ...