Информационные системы
Человеческий мозг - это гигантская сеть из десятков миллиардов нервных клеток, связанных между собой отростками (дендритами и аксонами). Благодаря работам нейрофизиологов достаточно хорошо известен механизм действия отдельного нейрона. Отвлекаясь от быстрых переходных процессов, можно сказать, что нервная клетка способна находиться в одном из трех дискретных состояний: покое, возбуждении и невозбудимости (рефрактерности). Переходы между состояниями управляются как процессами внутри самой клетки, так и электрическими сигналами, поступающими к ней по отросткам от других нейронов. Переход от состояния покоя к возбуждению происходит пороговым образом при почти одновременном поступлении достаточно большого числа импульсных сигналов возбуждения. Оказавшись в возбужденном состоянии, нейрон находится в нем в течение определенного времени, а потом самостоятельно переходит к состоянию рефрактерности. Это состояние характеризуется очень высоким порогом возбуждения: нейрон практически не способен реагировать на приходящие к нему сигналы возбуждения. Через некоторое время способность к возбуждению восстанавливается и нейрон возвращается в состояние покоя.
Кроме устройства отдельной нервной клетки относительно хорошо изучены глобальные аспекты деятельности мозга - назначение его отдельных областей, связи между ними. Однако попытки описать работу мозга с позиций текущих принципов функ-ционирования вычислительных устройств с линейной организацией вычислений приводят к фантастическим цифрам скорости передачи информации. Несколько ближе оказываются распределенные вычислительные сети, но они и построены на дискретных принципах, в то время как мозг использует аналоговую обработку.
Непрекращающиеся попытки построить подобные мозгу вычислительные системы привели к идее использования нечеткой логики. Большие надежды связаны с нанотехнологиями и молекулярными компьютерами, что требует нового взгляда на проблему обеспечения надежности, так как вероятность прекращения функционирования отдельного элемента достаточно высока. Видимо и программирование такого компьютера будет отличаться от традиционного подхода, возможно более напоминая процесс тренировки/обучения.
Клеточные автоматы
В качестве модели таких устройств сейчас рассматриваются клеточные автоматы. Ими обычно называют сети из элементов, меняющих свое состояние в дискретные моменты времени по определенному закону, в зависимости от того, каким было состояние самого элемента и его ближайших соседей по сети в предыдущий дискретный момент времени.
Самым известным клеточным автоматом является игра Жизнь. Здесь сеть представляет собой двумерную или трехмерную решетку элементов, каждый из которых может иметь два состояния: жив или мертв. Смерть, жизнь или оживление клетки определяется количеством живых соседей: в пустоте или при перенаселенности клетка гибнет, в некотором диапазоне числа соседей продолжает жить, такое же число может воспроизвести новую клетку. Более сложные автоматы могут иметь большее количество состояний элементов, элементы могут быть подвержены случайным возмущениям и т. п. По своему поведению клеточные автоматы делятся на четыре класса. К первому классу относятся автоматы, приходящие через определенное время к устойчивому однородному состоянию. Автоматы второго класса через некоторое время после пуска генерируют стационарные или периодические во времени структуры.
В автоматах третьего класса по прошествии некоторого времени перестает наблюдаться корреляция процесса с начальными условиями. Наконец, поведение автоматов четвертого класса сильно определяется начальными условиями и с их помощью можно генерировать весьма различные шаблоны поведения. Такие автоматы являются кандидатами на прототип клеточной вычислительной машины. В частности, с помощью специфических клеточных конфигураций игры Жизнь, которая как раз и является автоматом четвертого типа, можно построить все дискретные элементы цифрового компьютера.
Клеточные автоматы используются для моделирования гидродинамических течений, так как уравнения гидродинамики соответствуют математической модели, описывающей поведение решетчатого газа, одного из клеточных автоматов, на макроуровне. Структуры, возникающие в игре Жизнь , очень точно повторяют возмущение поведение поверхности потока жидкости механическим препятствием. Примитивные одномерные клеточные автоматы мо-гут моделировать процесс горения различного характера.
Автоматы - колонии
Такие автоматы используются для моделирования поведения во времени и пространстве популяций живых организмов. Чтобы пояснить, о чем идет речь, опишем автомат Aquatorus , предложенный Аланом Дьюдни [2]. Здесь элементами автомата являются не просто участки среды, а объекты различных типов, способные перемещаться в среде и взаимодействовать между собой. В автомате Дьюдни таких типов два: акулы и рыбы. Некоторый временной параметр задает период, после которого у объектов каждого типа возникает потомство, т.е. новый объект того же типа. Еще один параметр задает время жизни объектов каждого типа, причем для акул он меньше, но последние могут продлить свое существование, поглотив объект типа рыба .
Немного больше о технологиях >>>
Озонолиз как способ очистки и получения новых полезных нефтепродуктов
В первой части обзора [1] были описаны
изменения химической природы и свойств компонентов нефти при озонировании и
последующем разрушении продуктов реакции. Озонолиз нефтяного сырья может быть с
успехом использован не только для увеличения объемов производства дистиллятных
мото ...
Современный миф
Большинство людей полагают, что теория
эволюции, впервые выдвинутая английским естествоведом-любителем Чарльзом
Дарвином, основана на реальных научных доказательствах, исследованиях и
экспериментах. Между тем, Чарльз Дарвин вовсе не являлся основоположником этой
теории, более т ...