Синергетика как новая парадигма науки
Как видим, известное нам второе начало термодинамики, говорящее о росте беспорядка (энтропии) в замкнутых системах, теряет свою силу для открытых нелинейных систем, изучаемых синергетикой. Локализованные, быстро развивающиеся структуры существуют за счет возрастающей хаотизации среды, на основе производства в ней энтропии. Структуры горения как бы интенсивно "выжигают" среду вокруг себя. И организация (порядок), и дезорганизация (энтропия) увеличиваются одновременно. Но на пике обострения процесса разогрева и "подбирания" границ тепла структура становится чрезвычайно шаткой, чувствительной к малейшим флуктуациям, случайным изменениям хода процесса. Они способны инициировать распад сложной структуры или же вывести на иной, противоположный режим - режим спада температуры и расползания тепла.
Важные результаты, касающиеся спонтанного возникновения упорядоченных структур, были получены к началу 70-х годов и в химии. Они связаны в первую очередь с исследованиями, проводимыми в Свободном университете Брюсселя под руководством Ильи Пригожина - бельгийского ученого, получившего в 1977 году за свои работы в области неравновесной термодинамики Нобелевскую премию. "В различных экспериментальных условиях, - пишут Илья Пригожин и его соавтор Изабелла Стенгерс, - у одной и той же системы могут наблюдаться различные формы самоорганизации - химические часы, устойчивая пространственная дифференциация или образование волн химической активности на макроскопических расстояниях" [8].
Химические часы - пожалуй, самый яркий феномен самоорганизации химических процессов, открытый в начале 50-х годов российскими учеными Б.П.Белоусовьм и А.М.Жаботинским. Структура, которая здесь образуется, представляет собой не пространственную, а временную структуру - колебание с регулярной периодичностью. Для теоретического описания реакции Белоусова-Жаботинского Пригожин со своими сотрудниками разработал специальную модель, названную брюсселятором. Она выглядит так. Имеются вещества, вступающие между собой в химическую реакцию. Концентрацию только одного из них - "управляющего" вещества - плавно увеличивают. Как только концентрация переходит критический порог (при прочих равных параметрах), прежнее стационарное состояние химической системы становится неустойчивым и концентрации двух других реагирующих веществ начинают колебаться с отчетливо выраженной периодичностью. Колебания происходят вокруг некоторого нестабильного фокуса и выходят на предельный цикл, то есть устанавливается устойчивое периодическое движение.
В теории самоорганизации проводится четкое различие между стационарными, "застывшими" структурами, такими, как решетки кристаллов, и относительно устойчивыми структурами, вызываемыми к жизни из первоначально хаотического состояния путем интенсивного изменения по некоторому ведущему параметру - будь то накачкой энергии в физическом эффекте лазерного излучения, увеличением концентрации вещества в описанном выше химическом эффекте или, с самой общей точки зрения, притоком информации в среду, что также охватывается синергетическими моделями. Первый тип структур - это, можно сказать, "тупики эволюции". Для равновесных стационарных структур малое возмущение "сваливается" на ту же самую структуру. Второй тип - это структуры, способные самопроизвольно возникать и развиваться в активных, рассеивающих (диссипативных) средах в состояниях, далеких от термодинамического равновесия. Для обозначения такого типа структур Пригожин предложил использовать понятие диссипативной структуры.
Исследования явлений самоорганизации в химических процессах привели Пригожина к созданию собственной обобщенной теории самоорганизации, далеко выходящей за пределы химии. Он называет ее по-разному: нелинейной неравновесной термодинамикой, наукой о сложном, теорией перехода от хаоса к порядку, но чаще всего теорией диссипативных структур. Пригожин предпочитает не пользоваться термином "синергетика", хотя по своему внутреннему содержанию его исследования, бесспорно, относятся к синергетической теории эволюции и самоорганизации сложных систем.
Немного больше о технологиях >>>
Озонолиз как способ очистки и получения новых полезных нефтепродуктов
В первой части обзора [1] были описаны
изменения химической природы и свойств компонентов нефти при озонировании и
последующем разрушении продуктов реакции. Озонолиз нефтяного сырья может быть с
успехом использован не только для увеличения объемов производства дистиллятных
мото ...
Ошибка Лоренца
В
физике часто используются очевидные положения, которые представляются
достаточно ясными и не требуют последующего обоснования. Это не всегда оправдано,
поскольку есть случаи, приводящие к парадоксальным следствиям. Тогда приходится
возвращаться к анализу «очевидных положений» ...