Следы хаоса
Куда уходит вещество от гиперболической периодической точки? Откуда оно приходит? Одна из возможностей состоит в том, что втекающий поток непрерывно переходит в вытекающий, т. е. материал, вышедший из гиперболической точки, приходит обратно к ней или к другой гиперболической точке. Именно такой механизм осуществляется в стационарных потоках (когда гиперболические точки фиксированы и не являются периодическими), поэтому эффективного вытягивания и образования складок не происходит.
Нестационарные двумерные потоки могут приводить к эффективному перемешиванию, поскольку в этом случае отток, связанный с одной гиперболической периодической точкой, может пересекать область вытекающего потока этой же или какой-либо другой гиперболической точки. Точку, в которой пересекаются втекающий и вытекающие потоки, связанные с одной гиперболической точкой, называют трансверсальной гомоклинной точкой. Если эти пересекающиеся потоки связаны с двумя разными гиперболическими точками, то точку пересечения потоков называют трансверсальной гетероклинной точкой.
|
Рис 3.ПЕРЕМЕШИВАНИЕ ЖИДКОСТЕЙ в природных явлениях и производственных процессах происходит как в результате вытягивания и образования складок, так и под влиянием диффузии и разрушения капель. Только в идеальном случае окрашенная капля (слева вверху) может бесконечно вытягиваться и складываться, не испытывая разрывов и не диффундируя в соседние области (вверху справа). Интересно, что в такой гипотетической ситуации для достижения эффективного перемешивания часть такой пробной капли должна вернуться в исходное положение. Процессы молекулярной диффузии (без которых невозможно эффективное перемешивание) обычно приводят к размыванию границ между двумя растворимыми жидкостями (слева внизу). В случае нерастворимых жидкостей пробная капля может разрушиться на множество брызг, которые затем сливаются в капли меньшего размера, чем исходная (справа внизу). |
Гомоклинные и гетероклинные пересечения — характерные следы хаоса. С математической точки зрения система, в которой могут возникать подкововидные структуры или транс-версальные гомо- или гетероклинные пересечения, может считаться хаотической. Оказывается, что в потоке, описываемом подкововидной структурой, обязательно должны присутствовать трансверсальные гомо-клинные точки; точно так же наличие хотя бы одной такой точки означает, что поток описывается подкововидной структурой.
Оказывается, даже единственное пересечение втекающего и вытекающего потоков с неизбежностью приводит к появлению трансверсальных гомоклинных точек и что подобные пересечения могут возникать даже в таких «хороших» системах, как системы, описываемые законами движения Ньютона. Этот факт впервые был открыт в XIX в. французским математиком Анри Пуанкаре. Однако сложность анализа течения жидкости при наличии такого пересечения (подобное состояние системы сейчас называют хаосом) поразила Пуанкаре, и он решил больше не заниматься этой проблемой.
Если перемешивание может быть представлено детерминированным точечным преобразованием, оно должно быть кинематически обратимым. Иными словами, совершив все движения в обратном порядке, можно было бы разделить смешанные жидкости (если пренебречь молекулярной диффузией). Однако повседневный опыт показывает, что смешивание необратимо. Даже если теоретически система детерминирована, движения, приводящие к повторяющимся вытягиваниям и образованию складок, не могут быть обращены во времени.
Немного больше о технологиях >>>
Колумбия ожидание мира
«Мы — колумбийцы — выжили в таких трудных
географических условиях — и горы, и болота. Мы не сломались, несмотря на
десятилетия непрекращающейся войны. Мы продолжаем работать и радоваться жизни.
Война — это как явление природы, как ураган, ему нужно сопротивляться!»
Не знаю, к ...
Об ориентационной поляризации спиновых систем
В
одной из наших предыдущих статей, посвященных термодинамике спиновых систем,
была выявлена несостоятельность попыток свести к теплообмену процессы
установления единой ориентации противоположно направленных ядерных спинов [1].
Несколько позднее было показано, что процессы упор ...