Об энтропийной оценке сверхпластичности
Рассматривается задача соответствия модели сверхпластичности процессу деформации с размытым фазовым переходом. Показано, что в оптимальных термодинамических режимах сверхпластичности минимизируется производство энтропии, которому соответствует формирование равноосной ультрамелкозернистой структуры.
Эффект сверхпластичности металлов и сплавов внешне проявляется в форме аномального квазиоднородного удлинения при малых значениях напряжений пластического течения. Металловедческими исследованиями установлено [1,2], что специфика подобной аномалии заключается в превалировании механизма зернограничного проскальзывания над другими формами массопереноса. Реализации указанного механизма способствует формирование ультрамелкозернистой структуры на предварительном этапе (структурная или микрозеренная сверхпластичность) или в процессе нагрева и деформации (динамическая сверхпластичность). Очевидно, что динамическая сверхпластичность имеет место в промышленных металлических материалах, которые реагируют на изменение температурных и кинематических условий в виде различной природы структурных превращений [3]. В частности, промышленные алюминиевые сплавы в исходном литом и деформированном состояниях проявляют сверхпластические свойства в термомеханических режимах структурного фазового перехода – динамической рекристаллизации [3 … 8]. В процессе последней в материале возникает равновесная структура с очень мелким зерном, примерно совпадающим по размерам с субзернами. Так создается структурная ситуация, способствующая осуществлению зернограничного проскальзывания. Наличие ультрамелкого зерна можно считать необходимым, но недостаточным условием развития эффекта. К микрозернистости следует добавить требование равноосности и несклонности к росту зерна при нагреве и деформации [2]. Важным структурным элементом считаются также границы зерен [9].
Отмеченный факт был использован при формулировке модели [10, 11], адекватно с позиций механики деформируемого твердого тела отражающей накопленные экспериментальные данные. Модель описывает поведение алюминиевых сплавов не только при сверхпластичности, но и в пограничных областях термопластичности и высокотемпературной ползучести.
Естественно оценить модель [10, 11], с точки зрения определения представляющих реальный интерес физических величин и получения дополнительной информации. Очевидно, что динамической сверхпластичности соответствует размытый фазовый переход [12] и поэтому целесообразно проследить за поведением функций отклика, которые сравнительно легко определяются при известном аналитическом выражении плотности термодинамического потенциала. К указанным функциям можно, прежде всего, отнести энтропию.
Исследование функции энтропии позволяет рассматривать процесс деформации с позиций самоорганизации диссипативных структур возрастающей сложности в неравновесных открытых системах [13].
При формулировке модели энергетическая функция состояния была принята в форме термодинамического потенциала Ландау с учетом внешнего поля
. (1)
Здесь;
- параметр порядка;
- напряжение пластического течения;
- скорость деформации;
- управляющий параметр;
- нормированная температура;
- постоянная материала; причем
,
- внутренние альтернативные параметры состояния;
- абсолютная температура;
- нижняя и верхняя границы термического диапазона сверхпластичности.
Легко видеть аналогию функции (1) с явным выражением потенциала катастрофы сборки [14]. Очевидно теперь, что если, то изменений структурного характера в деформируемом материале не происходит. Условие
соответствует структурно неустойчивому состоянию среды. Значение
отвечает переходным состояниям.
Немного больше о технологиях >>>
Об ориентационном взаимодействии спиновых систем
В
предыдущей статье [1] при анализе результатов экспериментов по изучению
ядерного магнитного резонанса в системе ядерных спинов [2, 3] был сделан вывод
о несводимости обнаруженного в экспериментах спин-спинового взаимодействия к
теплообмену, а также к электрическому или магнит ...
Суперкомпьютеры, доступные всем
Два
раза в год – в июне и ноябре – университеты Мангейма и штата Теннеси вместе с
Национальным научно-исследовательским вычислительным центром при Министерстве
энергетики США публикуют список пятисот самых высокопроизводительных
суперкомпьютеров – Top500, куда включают сведения ...