Принцип неопределенности
В 1926 г. В.Гейзенберг разрабатывает свой вариант квантовой теории в виде матричной механики, отталкиваясь при этом от принципа соответствия. Столкнувшись с тем, что при переходе от классической точки зрения к квантовой нужно разложить все физические величины и свести их к набору отдельных элементов, соответствующих различным возможным переходам квантового атома, он пришел к тому, чтобы каждую физическую характеристику квантовой системы представлять таблицей чисел (матрицей). При этом он сознательно руководствовался целью построить феноменологическую концепцию, чтобы исключить из нее все, что невозможно наблюдать непосредственно. В этом случае нет никакой необходимости вводить в теорию положение, скорость или траекторию электронов в атоме, поскольку мы не можем ни измерять, ни наблюдать эти характеристики. В расчеты следует вводить лишь те величины, которые связаны с реально наблюдаемыми стационарными состояниями, переходами между ними и сопровождающими их излучениями. В матрицах элементы были расположены в строки и столбцы, причем каждый из них имел два индекса, один из которых соответствовал номеру столбца, а другой - номеру строки. Диагональные элементы (т.е. элементы, индексы которых совпадают) описывают стационарное состояние, а недиагональные (элементы с разными индексами) - описывают переходы из одного стационарного состояния в другое. Величина же этих элементов связывается с величинами, характеризующими излучение при данных переходах, полученными с помощью принципа соответствия. Именно таким способом Гейзенберг строил матричную теорию, все величины которой должны описывать лишь наблюдаемые явления. И хотя наличие в аппарате его теории матриц, изображающих координаты и импульсы электронов в атомах, оставляет сомнение в полном исключении ненаблюдаемых величин, Гейзенберту удалось создать новую квантовую концепцию, составившую новую ступень в развитии квантовой теории, суть которой состоит в замене физических величин, имеющих место в атомной теории, матрицам - таблицам чисел. Результаты, к которым приводили методы, используемые в волновой и матричной механике, оказались одинаковыми, поэтому обе концепции и входят в единую квантовую теорию как эквивалентные. Методы матричной механики, в силу своей большей компактности часто быстрее приводят к нужным результатам. Методы волновой механики, как считается, лучше согласуется с образом мышления физиков и их интуицией. Большинство физиков при расчетах пользуется волновым методом и использует волновые функции.
Гейзенберг сформулировал принцип неопределенности, в соответствии с которым координаты и импульс не могут одновременно принимать точные значения. Для предсказания положения и скорости частицы важно иметь возможность точно измерять ее положение и скорость. При этом чем точнее измеряется положение частицы (ее координаты), тем менее точными оказываются измерения скорости.
Хотя световое излучение состоит из волн, однако в соответствии с идеей Планка, свет ведет себя как частица, ибо излучение и поглощение его осуществляется в виде квантов. Принцип неопределенности же свидетельствует о том, что частицы могут вести себя как волны - они как бы "размазаны" в пространстве, поэтому можно говорить не об их точных координатах, а лишь о вероятности их обнаружения в определенном пространстве. Таким образом, квантовая механика фиксирует корпускулярно-волновой дуализм - в одних случаях удобнее частицы считать волнами, в других, наоборот, волны частицами. Между двумя волнами-частицами можно наблюдать явление интерференции. Если гребни одной волны совпадают с впадинами другой волны, то они гасят друг друга, а если гребни и впадины одной волны совпадают с гребнями и впадинами другой волны, то они усиливают друг друга.
д) Интерпретации квантовой теории.
Немного больше о технологиях >>>
Эволюционный миф и современная наука
– "Дарвин был неправ... Теория
эволюции, возможно, самая страшная ошибка, совершенная в науке".
Эту мысль не так давно высказал член нью-йоркской
Академии наук И.Л.Коэн 1. В своем мнении Коэн далеко не одинок: Джон Вольфган
Смит – профессор орегонского Университета ...
Исторический анализ технических систем в прогнозном проекте
Приступая к прогнозному проекту обычно
изучаешь опыт предшественников, обращаешься к корифеям. На наш взгляд, наиболее
ценные советы можно получить в работе С. С. Литвина и В. М. Герасимова,
посвященной дальнему прогнозированию [1]. Но, когда переходишь к практическим
действиям ...