Анизотропия реликтового излучения
Так ли уж изотропен реликтовый фон? С точностью до 0,01 % он действительно одинаков во всех направлениях, чего достаточно, чтобы отбросить все попытки объяснить его близкими источниками и принять как излучение всей Метагалактики. А что будет, если еще повысить точность измерений?
20 лет назад такой эксперимент провела американская группа на высотном самолете-лаборатории и обнаружила заметную анизотропию реликта: в некоторой области небесной сферы температура излучения была чуть выше – максимальная разница составляла 3,5 мК, а в противоположной – на такую же величину меньше. Был открыт так называемый дипольный компонент анизотропии, получивший очень простое и естественное объяснение. Он обусловлен доплеровским смещением частоты (а значит, и температуры) излучения, принимаемого движущимся наблюдателем. Это тот же эффект, по которому высота гудка приближающегося поезда выше, а удаляющегося – ниже, чем стоящего. Реликтовые фотоны налетают со всех сторон; летящие навстречу наблюдателю окажутся более энергичными, а догоняющие «в хвост» – менее энергичными, чем приходящие сбоку. Этот эксперимент показал, что Земля (вместе с Солнечной системой, Галактикой и другими адресными подструктурами) движется со скоростью 370 км/с относительно далекого вещества, испустившего реликтовое излучение. Сам по себе этот результат очень интересен. Найдена инерциальная система, которую искали в начале века, решая проблему мирового эфира. Тогда опыт Майкельсона показал, что такой системы нет и эфира с приписываемыми ему свойствами упругой среды не существует. Эфир действительно сейчас физике не нужен, но избранная система отсчета (в некотором смысле абсолютная) все же, оказывается, существует.
За вычетом дипольного компонента реликтовое излучение на небесной сфере представляет равномерную «рябь», вызванную статистическими и приборными погрешностями. Конечных значений более мелкой анизотропии долго не находили, пока не были проведены на спутниках уникальные эксперименты РЕЛИКТ (СССР, 1984) и COBE (США, 1992). Первый показал, что более высокие анизотропные компоненты отсутствуют до уровня dТ / Т = 10–5, и этот факт свидетельствовал о большом количестве холодной темной материи (движущейся со скоростями много меньше скорости света). Второй открыл целый спектр анизотропных компонентов, которые, как сыпь, покрывают все небо и имеют весьма большие размеры (1 – 90о). Это следы тех первичных флуктуаций плотности вещества, которые появились в момент рекомбинации плазмы и из которых развились все наблюдаемые структуры Вселенной. Большой размер неоднородностей – аргумент в пользу инфляционной эры, поскольку зарождались они (в темной материи) именно в то далекое время и успели сильно вырасти.
Анизотропия реликтового фона на уровне 20–40 мкК – установленный факт. Ее компоненты, сохранившие отпечатки прошедших эпох, могут сослужить верную службу, став космологическим Розетским камнем в воссоздании истории «давно минувших дней».
Измерения реликтового излучения детекторами на высотных аэростатах подтвердили выводы спутниковых экспериментов и смогли продлить спектр анизотропных компонентов до высоких моментов. Результаты всех опытов приведены на рис. 2.
Рис. 2. Спектр неоднородностей (анизотропии) реликтового излучения: по оси абсцисс – мультипольный момент, по оси ординат – температурные флуктуации; точки с погрешностями – экспериментальные данные, кривые – результаты расчета по инфляционной модели (а) и модели топологических дефектов (б)
Точками показаны экспериментальные данные, кривыми – ожидаемые спектры в разных моделях первичных флуктуаций плотности. Хотя ошибки измерений еще очень велики, эксперименты лучше согласуются с предсказанием инфляционной модели (кривая а) и почти наверняка отвергают модель топологических дефектов (кривая б). В расчет заложены все космологические параметры Вселенной и, если измерения будут более точными, особенности расчетного спектра (растущая часть, положение и амплитуды трех пиков, крутой спад) могут быть точно «привязаны», в результате чего параметры станут известны с точностью, недоступной для других космологических тестов (пока неопределенность составляет 50%). Сейчас готовятся два новых прецезионных спутниковых эксперимента: MAP (США, запуск в 2001 г.) и Planck (Европейское космическое агентство, 2007 г.), результаты которых позволят определить параметры Вселенной с точностью до 5% (рис. 3), – и проблема выбора модели будет снята с повестки дня. Трудно переоценить общенаучную важность проводимых исследований – она сопоставима с самыми громкими открытиями прошлых веков, заложившими основы знания об окружающем мире.
Рис. 3. Тот же спектр анизотропии реликтового излучения, как он будет измерен в экспериментах МАР и Planck для модели плоской Вселенной с определенным набором космологических параметров
Немного больше о технологиях >>>
Новая концепция электромобиля
Электромобиль
– транспортное средство, ведущие колеса которого приводятся от электромотора
питаемого электробатареей, появился впервые в 1838 году в Англии. Электромобиль
существенно старше автомобиля с двигателем внутреннего сгорания. Поначалу он
опережал автомобиль по скорост ...
Механика. Античность и эллинский период
Исторический экскурс в прошлое физики, вне
всякого сомнения, позволяет лучше понять логику формирования и развития этой
науки, приведшую к современному ее состоянию. Нам представляется, что понимание
причины возникновения физики, ее изначальных целей, знакомство с этапами ее
ра ...