Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Вариационные задачи с разрывным интегрантом

Многие прикладные оптимизационные задачи сводятся к поиску экстремумов интегральных функционалов с разрывным интегрантом. Здесь "разрывной" понимается так: не обязательно разрывной. Обычно, в том числе и в монографиях [3, 5], оптимизационные задачи рассматриваются для функционалов, зависящих от операторов дифференцирования. В работах [10, 11] рассматриваются функционалы, зависящие от интегральных операторов, что существенно расширяет круг решаемых задач.

Будем решать вариационную задачу для функционалов с разрывным интегрантом, зависящих от линейных интегральных операторов

(2.1)

где h(t) - экстремаль, относительно которой предполагаем, что.

Функционал качества I может зависеть от нескольких операторов

(2.2)

где F[T ]- интегрант, определяющий связь (композицию) операторов F i в функционале I. Интегрант F[T ] может быть непрерывным, гладким, негладким и даже континуально многозначным или разрывным.

Оптимизации методами негладкого анализа посвящена монография Френка Кларка [3], но методику Кларка применить к функционалам, зависящим от интегральных операторов, нельзя, как нельзя ее применять и для функционалов с континуально многозначным или разрывным интегрантом. Кроме того, экстремали у Кларка предполагаются абсолютно непрерывными. Все это несколько сужает область применения негладкой оптимизации Кларка - теории, впитавшей в себя достижения его предшественников, на кoторых он ссылается в своей монографии. Поскольку оптимизируемый функционал зависит от интегральных операторов, метод, использованный в монографии [5], неприменим тоже. В то же время для решения сформулированной задачи достаточно методов вариационного исчисления, теории обобщенных функций и теоремы Фубини [8], поэтому будем поступать так.

Негладкий, континуально многозначный или разрывной интегрант можно представить с помощью функции включения H(x) (1.2) или ее производных, т.е. d -функции (1.5) и ее производных, используя их фильтрующие свойства. При варьировании функционала I все производные будем понимать в обобщенном смысле

.

Заметим, что этот интеграл теперь имеет математический и физический смыл, а не является "просто символом", как при классическом определении d -функции.

По общему правилу [9-12] введем однопараметрическое семейство кривых , где d h(t)-произвольная функция из Lp[a,b], a - малый параметр. Подставляя в операторы (2.1), а операторы (2.1) в функционал (2.2) и дифференцируя I по a , получим вариацию функционала d I и приравняем ее нулю:

(2.3)

Теперь, чтобы получить необходимое условие экстремума, надо исключить произвольную функцию из вариации функционала d I. В классическом вариационном исчислении это делается с помощью интегрирования по частям, которое в данном случае неприменимо. Полагая, что к вариации d I применима теорема Фубини [8], одним из условий применимости которой может быть суммируемость произведений

изменим в формуле (2.3) порядок интегрирования [10, 11]

(2.4)

Используя основную лемму вариационного исчисления в формулировке Л.Янга [7], получим аналог уравнения Эйлера для функционалов с континуально многозначным или разрывным интегрантом, зависящих от линейных интегральных операторов, действующих на экстремаль,

(2.5)

Следствие. Если воспользоваться фильтрующим свойством d -функции и ее производных, и обозначить ядра операторов (2.1) через Ki(x,t)=d (i)(x-t), то уравнение (2.5) примет вид уравнения Эйлера

(2.6)

простейшей вариационной задачи [12], но для функционалов с континуально многозначным или разрывным интегрантом

(2.7)

зависящих от искомой функции h(t) и ее производных h(i)(t).

Пример. Задача Дидоны с канавой. В распоряжении царевны имеется веревка заданной длины L, которой следует ограничить участок побережья, причем береговая черта представляется линией x=0 на плоскости Оtx (Рис.2). При этом надо найти кривую длины L, лежащую в полуплоскости, соединяющую точки (-1,0) и (1,0), такую что площадь между кривой и осью t максимальна.

Перейти на страницу: 1 2 3

Немного больше о технологиях >>>

В поисках инерцоида
Многие века люди относились к массивным телам как своеобразным складам движения – сколько в них вложишь, столько и вернешь. Но вот родилась дерзкая надежда превратить склады в источники: нельзя ли так пошевелить грузами на тележке, чтобы та поехала сама собой, за счет внутренни ...

Индуцированный распад протона
Дано теоретическое обоснование новому физическому эффекту - индуцированному распаду протона. Индуцированный распад протона (ИРП) рассматривается как ядерная реакция нового вида, которая может происходить только при учете особенностей фрактального строения протона. Индуцированны ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512