Вариационная задача поиска оптимального оператора
(3.7)
Полагая, что к вариации (3.7) применима теорема Фубини, изменим порядок интегрирования и суммирования и положим вариацию dI равной нулю
(3.8)
Применяя к вариации (3.8) основную лемму вариационного исчисления в формулировке Л.Янга [7], получим необходимое условие экстремума функционала (3.1), зависящего от оператора (3.2),
(3.9)
Если интегрант функционала (3.1) не является линейным, частные производные интегранта всегда содержат сам оператор (3.2), а уравнение (3.9) является нелинейным двумерным интегральным уравнением, когда искомая функция K(x,t) двух независимых переменных входит под знак интеграла. Свойства уравнений типа (3.9) пока исследованы мало. Только если функционал I - квадратичный, уравнение (3.9) - линейное двумерное интегральное уравнение, некоторые свойства которых сведены в монографии [11].
Список литературы
[1] Фейнмановские лекции по
Немного больше о технологиях >>>
Новые приоритеты в информационной безопасности США
Трагические
события, которые произошли в США 11 сентября 2001 года и повергли в шок весь
мир, вновь напомнили человечеству об обратной стороне технического прогресса.
Варварские террористические акты, совершенные группой террористов-смертников в
Нью-Йорке и Вашингтоне, стали су ...
Колумбия ожидание мира
«Мы — колумбийцы — выжили в таких трудных
географических условиях — и горы, и болота. Мы не сломались, несмотря на
десятилетия непрекращающейся войны. Мы продолжаем работать и радоваться жизни.
Война — это как явление природы, как ураган, ему нужно сопротивляться!»
Не знаю, к ...