Фрактальная размерность стримерных каналов
Тремя независимыми методами измерена фрактальная размерность плоскостной проекции стримерных каналов. На основе фрактального исчисления скейлинговые показатели полной длины внутри выделенной области и числа ветвлений стримерных каналов выражаются через фрактальную размерность.
Введение. В последнее время активизировалось изучение стримерных разрядов - сети каналов, возникающих при электрическом пробое в диэлектриках (воздухе, полимерных изоляторах, фотоэмульсии) [1,2]. Изучение стало особенно актуальным в связи с использование кабелей с полимерной изоляцией [2]. Однако отмечается, что количественной теории, описывающей рост ветвления электрического пробоя, до сих пор нет. В статье геометрическую конфигурацию разрядных каналов, рост числа каналов, их ветвление предложено рассматривать как фрактальные разветвленные объекты и описывать их количественно с помощью понятия фрактальной размерности [3-5]. Электрический пробой - видимый в оптическом диапазоне стримерный канал в диэлектриках, образованный локально растущим электрическим полем. Пробой возникает, когда на небольшой участок удаленной от заряженной подложки подается такое высокое напряжение, что происходит собственно электрический пробой. Под такое определение подходят разряды молний в воздухе, частичные разряды в эпоксидной смоле, плазменные структуры в фотоэмульсии. В указанном смысле стримерные каналы относятся к классу универсальности, зависящие только от двух безразмерных величин: фрактальной размерности и размерности пространства, в котором происходит процесс. М.Д. Носковым и др. [2] прямым измерением, было определено, что фрактальная размерность D частичных разрядов лежит в пределах 1.45 ¸ 1.55. Н.А. Поповым [1] определялась фрактальная размерность коронного разряда, им получено, что D = 2.16 0.05. Для разряда молний также измерялась фрактальная размерность, при этом установлено, что на масштабах от десятков метров и выше D = 1. Видим существенное различие в значениях для размерности. В связи с этим в статье тремя независимыми методами измерена фрактальная размерность планового рисунка системы стримерных каналов (рис. 1) [1].
Рис. 1. Система микроразрядов, пересекающих диэлектрическую фотопластинку [1].
Используемые методы являются результатами фрактального исчисления [6], основы последнего для связности изложения представлены в следующей части. Изложение в статье теории фрактального исчисления также связано с тем, что начиная с первых книг Б. Мандельброта и кончая научными работами последнего времени, пишут "- структуры, обладающие в том или ином смысле пространственным самоподобием -". Мы дадим замкнутую систему аксиом фрактального исчисления, и теперь не нужно будет говорить "- в том или ином смысле -".
Аксиомы фрактального исчисления. Фрактальная геометрия, открытая Б. Мендельбротом 30 лет назад, основывается на экспериментальном факте, что в общем случае длина L произвольной кривой (которая может быть изломана в любой точке) степенным образом зависит от масштаба измерения d :
L = C d 1-D. (1)
Здесь С - типичный для фрактальной геометрии размерный множитель, свой для каждой кривой, D - фрактальная размерность. Для обычных, гладких линий D = 1 и получаем "истинную" длину. Если кривая плотно заполняет всю плоскость (простой пример - броуновская траектория), то для нее D = 2. Формулу легко проверить, нарисовав синусоподобную линию и, меняя раствор циркуля, измерить длину такой линии. С появлением формулы Мандельброта (1) сразу же было осознано, что фрактальные линии масштабно - инварианты (самоподобны). Самоподобие означает, что как вся линия, так и любой ее участок обладают одной и той же размерностью. Если линию увеличить в l раз, то для измерения новой длины l L достаточно использовать масштаб, равный ld, т.е.
l L = C(l d ) 1-D. (2)
Немного больше о технологиях >>>
Об ориентационной поляризации спиновых систем
В
одной из наших предыдущих статей, посвященных термодинамике спиновых систем,
была выявлена несостоятельность попыток свести к теплообмену процессы
установления единой ориентации противоположно направленных ядерных спинов [1].
Несколько позднее было показано, что процессы упор ...
Эскиз к портрету биологической эволюции
История
развития биологии сродни интеллектуальному детективу. Сначала –
феноменологические дебри, несистемное накопление знаний, затем первые попытки
систематизации. Когда стало ясно, что мир развивается, появились эволюционные
гипотезы. Они отражали отдельные звенья этого слож ...