Классические основания квантовой механики
Известно, что консервативные системы (E = const), подчиняющиеся этому уравнению, могут обладать только вполне определенными значениями энергии. Это же следует и из выражения (1), согласно которому определенным длинам волн спектра излучения атомов соответствуют определенные радиусы электронных орбит. Таким образом, идея «квантования» энергии электронов и их орбит также естественным образом вытекает из классических представлений.
Предложенный подход выгодно отличается также от атомной механики Бора, которая хотя и придерживалась в основном классических принципов, потребовала ряда дополнительных постулатов. Наиболее уязвимым из них явилось допущение о том, что электрон излучает в момент перехода с одной орбиты на более низкую, так что частота излучаемых волн зависит как от начальной, так и от конечной энергии атома. Отсюда следовало, что электрон либо каким-то непостижимым образом «знает» о будущей орбите, либо излучает только после попадания на конечную стационарную орбиту. Ввиду неприемлемости обоих следствий это положение всегда оставалось самым непонятным и слабым звеном в теории Бора. С изложенных позиций электрон переходит на нижележащую орбиту лишь после того, как атом излучает энергию. Тем самым устраняется основная трудность теории Бора.
Представление о том, что излучают не электроны, а атомы, объясняет также результаты опытов по «дифракции электронов», поскольку позволяет допустить, что дифракционную картину создают не электроны, а возбуждаемые ими атомы вокруг отверстия, через которое они пролетают. Тем самым проливается новый свет на дуализм «волна – частица».
Однако наиболее важным результатом предложенного подхода являются дополнительные возможности нахождения параметров электронных орбит по данным спектроскопических наблюдений. В частности, по известным длинам волн излучения λ или волновым числам νλ ≡ 1/λ = ν/c можно найти радиус i-й устойчивой электронной орбиты ai атомов, излучающих на этой частоте. Исходя из равенства на такой орбите центробежной силы fω = mev2/ai силе взаимодействия электрона с ядром fr = e2/ai2, после подстановки в выражение νλ = p/hc несложно найти радиус электронной орбиты, соответствующий определенной частоте излучения:
ai = (e2/4π2c2meνλ2)–3 м. |
(5) |
После этого нетрудно найти среднюю орбитальную скорость электронов v = 2πaiν, кинетическую энергию электрона на i-й орбите Ek = mev2/2 и число оборотов электрона на орбите n = ν. Однако вопрос о соответствии такого подхода результатам экспериментов остается при этом открытым.
Немного больше о технологиях >>>
Разработка интегрированного стартер-генератора на основе вентильно-индукторной машины
Рассматриваются
принципы работы стартер-генераторного устройства автономного объекта на базе
вентильно-индукторной машины. Проведено исследование режимов работы
вентильно-индукторного стартер-генератора на основе математического
моделирования. Предложено решение проблем расшире ...
Обработка резанием
Обработка резанием является универсальным
методом размерной обработки. Метод позволяет обрабатывать поверхности деталей
различной формы и размеров с высокой точностью из наиболее используемых
конструкционных материалов. Он обладает малой энергоемкостью и высокой
производительно ...