Электрические цепи с бинарными потенциалами
Рассматриваются электрические цепи c линейными элементами и диодами, не содержащие транзисторов. Все потенциалы в этих цепях принимают только два значения. Анализируются требования, которым должны удовлетворять такие цепи. Устанавливается соответствие между такими цепями и схемами, построенными из дискретных элементов. В качестве дискретных схем такие цепи являются обратимыми в том смысле, что их выводы могут использоваться либо как входы, либо как выходы. При передаче сигналов через такую дискретную схему в одном (прямом) направлении вычисляется некоторая (прямая) функция алгебры логики. При передаче сигналов в другом (обратном) направлении вычисляется функция алгебры логики, которая является обратной относительно прямой функции. Указываются возможные области применения.
Логические элементы, используемые в вычислительной технике, являются нелинейными и активными. В статье рассматриваются схемы, которые не содержат транзисторов, а содержат только линейные элементы и диоды. Эти схемы подобны в определенном смысле логическим элементам AND, OR, NOT. Подобие заключается в том, что существуют такие потенциалы на входах и выходах этих схем, которые удовлетворяют функциям AND, OR, NOT алгебры логики. Кроме того, потенциалы и токи в указанных схемах удовлетворяют законам Кирхгофа. Поэтому они в общем случае могут и не удовлетворять функциям алгебры логики. В этом заключается различие между логическими элементами и указанными схемами, которые далее называются аналоговыми логическими элементами AND, OR, NOT или, сокращенно, элементами AnAND, AnOR, AnNOT.
Рассматривается определенная электрическая цепь, составленная из элементов AnAND, AnOR, AnNOT. Эта цепь далее называется аналого-дискретной схемой АД. Схема АД при определенных условиях ведет себя подобно обычным цифровым схемам. Принципиальное отличие заключается в следующем.
Схема АД имеет две группы выводов, х и у. Они могут использоваться либо как входы, либо как выходы схемы АД. Показывается, что при одном способе включения схема АД выполняет преобразование (назовем его прямым) входа х в выход у в соответствии с некоторой системой уравнений алгебры логики v вычисляет ДНФ. При другом способе включения схема АД выполняет преобразование входа у в выход х, обратное прямому, т.е. решает задачу, обратную вычислению ДНФ.
Отмечается аналогия между схемой АД и обычным преобразователем, реализующим некоторую ДНФ. При замене в схеме АД элементов AnAND, AnOR, AnNOT элементами AND, OR, NOT и исключении некоторых дополнительных элементов она превращается в указанный преобразователь. Отличие заключается в том, что преобразователь вычисляет ДНФ, а схема АД вычисляет как ДНФ, так и обратную ДНФ.
Известно, что электрическая цепь, содержащая линейные элементы и диоды, минимизирует некоторую функцию токов этой цепи при ограничениях, каковыми являются первый закон Кирхгофа и конструктивные уравнения элементов этой цепи. Минимизируемая функция является положительно полуопределенной квадратичной формой, а ограничения линейны. В связи с этим можно говорить, что электрическая цепь решает задачу квадратичного программирования. Математически этот факт является следствием второго закона Кирхгофа и перечисленных ограничений (можно утверждать и обратное). Предлагаемые схемы относятся к этому же типу электрических цепей и потому они также решают некоторую задачу квадратичного программирования, что происходит одновременно с тем дискретным вычислением, для которого спроектирована схема. Представляется, что этот факт может быть использован для конструирования дискретных схем, решающих задачу математического программирования на аппаратном уровне.
- Аналоговые логические элементы
- Электрическая цепь с ТД
- Электрическая цепь с аналоговыми логическими элементами - схема АД
- Прямое включение.
- Обратное включение.
- Таблица истинности для схемы АД
- Пример.
Немного больше о технологиях >>>
Микросхемотехника
Еще несколько лет назад различные
электронные устройства собирали из отдельных элементов – электронных ламп,
реле, трансформаторов, резисторов, конденсаторов, – долго и ненадежно, да и
размеры аппаратуры получались весьма внушительными. Например, электронная
вычислительная маши ...
Стратегия «золотой середины»
Выработанная
веками народная мудрость, правило поведения или закон природы? Ниже я
постараюсь показать, что это такой же универсальный закон природы как, скажем,
закон всемирного тяготения.
Понятие
золотой середины далеко не ново. О нем писали еще Конфуций (551...479 до н.э. ...