Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Электростатическое взаимодействие точечных зарядов

|w3/(w1+w2)| ≤ 1, (22)

то есть плотность энергии взаимодействия зарядов в каждой точке поля никогда не превышает суммы плотностей их собственных силовых полей. Новая деформированная структура поля обладает большей энергией, чем недеформированная. Поле «стремится» избавиться от избыточной энергии, и отсюда возникают силы взаимодействия. Механизм образования деформированной «надструктуры» w3 целиком определяется принципом суперпозиции (векторным сложением напряжённостей полей).

Выясним, как соотносятся полные энергии взаимодействия внутри центральной зоны и за её пределами? Ответ на него может дать интегрирование по формуле (17) с учётом (16) и (18). Интеграл по y после подстановки

dV = 2πR03ydydx, y2 = z, 2ydy = dz (23)

в формулу (17) становится табличным. Вводя обозначения,

a = 1, b = x2 + (1 – x)2, c = x2(1 – x)2, (24)

имеем

A ∫V w3dV = A∙2πR03∫xdx ∫z (± c1/2 + z) dz / (az2 + bz + c)3/2 = B ∫xI(x)dx, (25)

I(x) = (± c1/2 – z)/(4ac – b2)(az2 + bz + c)1/2|0∞ = [1/(1 – 2x)2] ± [1/(1 – 2x)2], (26)

B = (q2∙4πR03/32π2ε0R04) = q2/8πε0R0. (27)

Смысл I(x) – потенциальная энергия на единицу длины вдоль x, просуммированная по бесконечной плоскости (с координатой x), перпендикулярной оси x. С другой стороны, это – осреднённая в названной плоскости относительная сила воздействия на заряд слоем поля, толщиной dx. График I(x) показан на рис. 3.

Рис. 3. Изображение I(x) по формуле (26)

Интеграл (25) вычисляется в пределах от нуля до бесконечности. При этом надо различать три области по x:

1) область отрицательных значений (–∞ < x < 0, знак плюс перед c1/2);

2) область между зарядами (0 ≤ x ≤ 1, знак минус перед с1/2);

3) область оставшихся положительных значений (1 < x < ∞, знак плюс перед c1/2).

Аналогично применяются знаки в правой части (26).

Вычисления по формуле (25) дают следующие результаты. В областях 1 или 3

I1, 3(x) = q2/4πε0R0(1 – 2x)2. (28)

Во второй области

I2(x) = 0. (29)

Из формул (3), (17), (25) следует, что и в других случаях, каковы бы ни были величины и знаки зарядов, потенциальная энергия в области 2 равна нулю, причём компенсация положительных и отрицательных вкладов происходит в каждой плоскости x = const. Этот факт заслуживает особого внимания, так как в области 2 происходят существенные деформации поля. Таким образом, оказывается, что вся энергия взаимодействия сосредоточена в областях 1 и 3 поровну. Воздействие на заряды осуществляется не из пространства между зарядами, а из пространства снаружи.

Интегрирование выражения (25) по x в пределах от –∞ до +∞ приводит к результату

∫I1,3(x)dx = (q2/4πε0R0)·(0,5+0,5) = q2/4πε0R0 = U. (30)

Независимое интегрирование (17) воспроизводит (ещё раз!) закон Кулона для U и подтверждает предположение (15). Интересная деталь: в выражении (17) значимые для взаимодействия зарядов величины (q и R0) выводятся за знак интеграла, образуя необходимую энергию U, а сам интеграл, в конечном счете, оказывается равным единице при любых обстоятельствах. Формулы (25) .(30) демонстрируют вероятностный характер распределения энергии внутри поля, и объясняют причину совпадения расчётов энергии взаимодействия двумя разными способами, упомянутыми во введении. Так и должно быть, потому что напряжённости E обладают свойствами квантовомеханических амплитуд [14].

При рассмотрении взаимодействия разноимённых зарядов значение W3 (см. формулу (13)) становится положительным внутри центральной зоны, и отрицательным за её пределами. Знак минус приобретает потенциальная энергия U.

Функция W3 применяется также в вариационной процедуре (принципе наименьшего действия) для электрической составляющей электромагнитного поля (см. [5, 12]). В этом случае W3 с самого начала рассматривается, как распределение вероятностей взаимодействия по точкам пересечения напряжённостей E1 и E2 в пространстве. Результат такой процедуры для статического поля тот же, как по форме (вычисление функции Лагранжа по формулам (25) .(30)), так и по содержанию (закон Кулона).

Р.Фейнман в своей Нобелевской лекции [13] отмечает: « .электродинамику можно построить . различными способами, – на основе дифференциальных уравнений Максвелла, (или) на основе различных принципов наименьшего действия с полями, и без полей . Самые фундаментальные законы физики после того, как они уже открыты, все-таки допускают такое невероятное многообразие формулировок, по первому впечатлению не эквивалентных, и всё же таких, что после определенных математических манипуляций между ними всегда удаётся найти взаимосвязь. Чем это можно объяснить, – остаётся загадкой. Думается, что здесь каким-то образом отражается простота природы. Может быть, вещь проста только тогда, когда её можно исчерпывающим образом охарактеризовать несколькими различными способами, ещё не зная, что на самом деле ты говоришь об одном и том же».

Перейти на страницу: 1 2 3 4 5 6

Немного больше о технологиях >>>

Судьба термоядерного синтеза
Идея создания термоядерного реактора зародилась в 1950-х годах. Тогда от нее было решено отказаться, поскольку ученые были не в состоянии решить множество технических проблем. Прошло несколько десятилетий прежде, чем ученым удалось «заставить» реактор произвести хоть сколько-ни ...

Ошибка Лоренца
В физике часто используются очевидные положения, которые представляются достаточно ясными и не требуют последующего обоснования. Это не всегда оправдано, поскольку есть случаи, приводящие к парадоксальным следствиям. Тогда приходится возвращаться к анализу «очевидных положений» ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512