Континуально многозначные функции
Следует отметить, что в приведенном определении d -функция не рассматривается как "равная нулю при всех и обращающаяся в точке x=0 в бесконечность" [8]. Теперь d -функция рассматривается как луч - линейное множество, имеющее мощность континуума.
Поскольку уточненное определение d -функции не затрагивает ее определения как функционала на пространстве D, все свойства d -функции, рассматриваемой как сингулярная обобщенная функция, сохраняются.
Производная d -функции имеет наглядное представление в виде оси ординат, обладает двойной направленностью в каждой из полуплоскостей y<0 и y>0 и пересекает ось абсцисс (все это в одной точке x=0).
Далее все производные понимаются в обобщенном смысле [6-9], т.е. в виде свертки с производными сингулярной d -функции.
Теория обобщенных функций и разработанная техника вычислений их производных [6-9] позволяют распространить необходимые условия экстремума на континуально многозначные (так называемые разрывные) функции многих действительных переменных.
Немного больше о технологиях >>>
Изобретать по правилам
Задавали ли Вы себе когда-нибудь вопрос:
"Бывают ли нетворческие профессии?" Какие? Фрезеровщик на заводе
приделал несколько линз и зеркал к обычному станку. Теперь он, даже не
поворачивая головы, видит все шкалы, не надо "нырять" к нониусам,
терять время, с ...
Каталитический этюд
Современное учение о катализе можно
уподобить гигантскому живописному полотну, на котором с большого расстояния
различимы два частично пересекающихся сюжета. Первый включает процессы, с
помощью которых химики стремятся производить то, что давно умела делать
природа. Речь идет в ...