Перспективные аспекты развития физико-топологических представлений о времени
, (5.2)
, (5.2)
(5.3)
2) Исследуем вариант ( 5.1 )
Таким образом доказано, что выражение - существует .
3) Анализ записи ( 5.2 )
Перед доказательством, целесообразно сделать следующее замечание. Так как, Настоящее PR образовано пересечением Будущего и Прошлого, то легко представить, что дополнение множества Настоящего есть дополнение пересечений множеств Будущего и Прошлого, т.е..
Здесь доказанно, что универсальное множество Времени свободно от пустого множества и от множества Настоящего. 4) Разберем случай ( 5.3 )
Имеет место конечный результат, в котором отражено, что только объединение Будущего и Прошлого формирует универсальное множество Времени.
Заметим, что при доказательстве Предложений 1 и 2 сознательно приводятся полные записи алгебраических преобразований. Это необходимо делать, по-скольку нужна полная ясность при использовании методики Булевой алгебры применительно к композиции существующей между Прошлым, Настоящим и Будущим.
Представленная выше серия доказательств, естественно, требует самой прямой увязки с физической реальностью окружающего нас мира. И поэтому посмотрим каким образом можно использовать полученные результаты.
Для начала обратимся к Рис. 3 . Эта диаграмма схожа по своей форме с той, которая дается Хокингом и Эллисом в [2] . Но между ними есть принципиальное различие. Если в [2] диаграмма создается главным образом для пространства, то здесь схема стротся в ракурсе Временных отношений.
Итак, на Рис. 3 , в левой части фигурирует универсальное множество Времени. В иньективны множества Будущего, Настоящего и Прошлого, которые являются подмножествами При этом должен соблюдаться принцип каузальности и условие пересечения F и Р . Выберем на множестве Настоящего PR произвольную точку k , где . В связи с тем, что пересечение множеств Будущего и Прошлого приводит к возникновению множества Настоящего, то если.
В правой же части схемы показано Время n= 1 -измерений. Посмотрим, каким образом трансформируется левая часть при отображении на.
Первый шаг: за счет существования оператора взаимо-однозначного отображения происходит выделение множества и области. К тому же, теперь, координатой точки k является координата . Причем.
Второй шаг: при действии оператора взаимно-однозначного отображения наблюдается образование множества и области;. При этом, координатой точки k является координата. Где.
Немного больше о технологиях >>>
Ошибка Лоренца
В
физике часто используются очевидные положения, которые представляются
достаточно ясными и не требуют последующего обоснования. Это не всегда оправдано,
поскольку есть случаи, приводящие к парадоксальным следствиям. Тогда приходится
возвращаться к анализу «очевидных положений» ...
Преобразователь разности давлений Сапфир-22ДД
Описание контура.
Назначение. Технические данные. Устройство и работа. Техническое обслуживание.
Монтаж прибора. Настройка и проверка. Основные неисправности. Техника
безопасности.
Сапфир-22ДД-Ex (датчик
расхода)
В химической
промышленности комплексной механизац ...