Перспективные аспекты развития физико-топологических представлений о времени
, (5.2)
, (5.2)
(5.3)
2) Исследуем вариант ( 5.1 )
Таким образом доказано, что выражение - существует .
3) Анализ записи ( 5.2 )
Перед доказательством, целесообразно сделать следующее замечание. Так как, Настоящее PR образовано пересечением Будущего и Прошлого, то легко представить, что дополнение множества Настоящего есть дополнение пересечений множеств Будущего и Прошлого, т.е..
Здесь доказанно, что универсальное множество Времени свободно от пустого множества и от множества Настоящего. 4) Разберем случай ( 5.3 )
Имеет место конечный результат, в котором отражено, что только объединение Будущего и Прошлого формирует универсальное множество Времени.
Заметим, что при доказательстве Предложений 1 и 2 сознательно приводятся полные записи алгебраических преобразований. Это необходимо делать, по-скольку нужна полная ясность при использовании методики Булевой алгебры применительно к композиции существующей между Прошлым, Настоящим и Будущим.
Представленная выше серия доказательств, естественно, требует самой прямой увязки с физической реальностью окружающего нас мира. И поэтому посмотрим каким образом можно использовать полученные результаты.
Для начала обратимся к Рис. 3 . Эта диаграмма схожа по своей форме с той, которая дается Хокингом и Эллисом в [2] . Но между ними есть принципиальное различие. Если в [2] диаграмма создается главным образом для пространства, то здесь схема стротся в ракурсе Временных отношений.
Итак, на Рис. 3 , в левой части фигурирует универсальное множество Времени. В иньективны множества Будущего, Настоящего и Прошлого, которые являются подмножествами При этом должен соблюдаться принцип каузальности и условие пересечения F и Р . Выберем на множестве Настоящего PR произвольную точку k , где . В связи с тем, что пересечение множеств Будущего и Прошлого приводит к возникновению множества Настоящего, то если.
В правой же части схемы показано Время n= 1 -измерений. Посмотрим, каким образом трансформируется левая часть при отображении на.
Первый шаг: за счет существования оператора взаимо-однозначного отображения происходит выделение множества и области. К тому же, теперь, координатой точки k является координата . Причем.
Второй шаг: при действии оператора взаимно-однозначного отображения наблюдается образование множества и области;. При этом, координатой точки k является координата. Где.
Немного больше о технологиях >>>
Молекулы-русалки
Эта история начинается с
одного из многочисленных увлечений Бенджамина Франклина, выдающегося
американского ученого и респектабельного дипломата. Будучи в 1774 году в
Европе, где он улаживал очередной конфликт между Англией и Североамериканскими
Штатами, Франклин в свободное вр ...
Оборудование и технология эхо-импульсного метода ультразвуковой дефектоскопии
Двадцать первый век - век атома, покорения космоса,
радиоэлектроники и ультразвука. Наука об ультразвуке сравнительно молодая.
Первые лабораторные работы по исследованию ультразвука были проведены великим
русским ученым-физиком П. Н. Лебедевым в конце XIX, а затем
ультразвуком ...