Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Формы, механизмы, энергия наномира

Механизм передачи энергии иллюстрируется механизмом шестеренчатой модели Максвелла [13], в котором возможно явление выравнивания скоростей "молекулярных вихрей".

Экспериментально проверенные в лабораториях МГУ, МЭИ и МГТУ им. Н.Э. Баумана формы резонаторов

Если в узлах и пучностях стоячих волн скорость вращения элементов наномира различна, то задача извлечения энергии у нас сводится к нахождению способа выравнивания этих скоростей.

Эта задача решается нами путем наложения двух или более стоячих волн так, чтобы узлы одной волны оказались вблизи пучностей соседней волны.

Рассмотрим наиболее характерный пример – многогранные диэлектрические резонаторы.

Известны [3] призматические диэлектрические резонаторы "шепчущей галлереи", форма которых в пределе стремится к цилиндру.

Они позволяют формировать замкнутую стоячую волну. Для реализации совмещения узлов этой волны с пучностями другой стоячей волны нужно изготовить дополнительные грани второго яруса.

С целью упрощения технологии оба яруса изготавливаются как боковые грани бипирамиды с осью симметрии 8-го порядка. Один ярус повернут вокруг оси симметрии пирамиды на 1/16 долю круга.

Существование двух ярусов стоячих волн, предсказанное нами теоретически [22], подтвердилось нами экспериментально. Потери при комнатной температуре на длине волны 8 мм составили, как и ожидалось [22], 0.0003 в бипирамиде, изготовленной из лейко-сапфира [3] с угловой точностью 1 минута.

Передача энергии из узла одного яруса в пучность другого, по нашим оценкам, составляет не более 0.00001, что в 30 раз меньше потерь в материале и на излучение. По нашим оценкам, основанным на экспериментальном обнаружении прямой зависимости добротности от точности изготовления резонатора, явление самогенерации можно ожидать в случае более точной огранки (1 .10 угловых секунд).

Кстати, существует много (около 600) ритуальных форм, представляющих собой многогранники, в которых выполняются условия:

Многогранник имеет ось симметрии n-ого порядка, где 4 < n < 20.

Грани соседних ярусов повернуты вокруг этой оси на угол 180 / n градусов, что типично, но не обязательно.

Мы предполагаем, что множество других ритуальных форм может не соответствовать высказанной гипотезе.

После проведения полуколичественного анализа некоторого множества форм электромагнитных резонаторов и их сопоставления с ритуальными формами нам стало ясно, что многообразие ритуальных форм значительно богаче многообразия форм резонансных систем, известных науке сегодня, однако большинство рассмотренных ритуальных форм относится к тем же классам симметрии.

Также нами впервые высказано предположение о том, что ритуальные формы могут являться результатом подражания (не обязательно осознанного) формам резонансных систем.

В результате проведения серии экспериментов и их интерпретации нам удалось выяснить, что большинство из 600 упомянутых ритуальных форм являются не описанными ранее резонансными системами (есть основание предположить, что всего существует примерно 100000 ритуальных форм).

Большинство обнаруженных нами резонансных систем могут быть пригодны для преобразования внутренней энергии наномира в электромагнитные колебания, если удастся разместить возникающие в них системы стоячих волн таким образом, чтобы узлы и пучности соседних волн располагались в непосредственной близости друг от друга. Уменьшение потерь в резонансной системе, где должны выполняться условия преобразования внутренней энергии в электромагнитные колебания, способствовало бы возникновению автоколебаний.

Главная для нас проблема сегодня заключается в необходимости создания резонаторов с очень высокой степенью точности. И над достижением нужной точности (угловой – 1 .10 угловых секунд, линейной – 0.1 .10 микрон при размерах изделия в несколько десятков миллиметров) сейчас, собственно, и ведутся работы. В таблице №4 указаны параметры резонаторов "шепчущей галлереи", измеренные в МГУ 6 марта 1997 года.

В дальнейшем эксперименты проводились также и в лаборатории МГТУ им. Н.Э.Баумана (совместно с доц., к.т.н. Павловым Г.Л.). Ниже приведены результаты измерения параметров резонаторов "шепчущей галлереи" в одном из экспериментов в МГТУ им. Н.Э.Баумана 29 мая 1997 г.

Таблица №4

Резонатор

Параметры

1. Линза из лейко-сапфира Диаметр 25 мм. Радиус кривизны 14.5 мм. Толщина 7.3 мм. Сколы меньше 0.05 мм.

Частота резонанса (ГГц) Ширина полосы (МГц) Добротность

28.71 0.9 32000

33.68 1.0 34000

34.10 0.7 49000

34.26 1.0 34000

34.87 0.9 39000

Частота резонанса (ГГц) Ширина полосы (МГц) Добротность

36.20 0.7 52000

36.53 5.0 7300

37.05 2.0 19000

37.09 1.0 37000

37.38 3.0 12000

Частота резонанса (ГГц) Ширина полосы (МГц) Добротность

37.53 1.0 38000

37.57 1.8 21000

37.60 1.0 38000

38.12 1.0 21000

38.45 1.0 38000

2. Линза из лейко-сапфира Диаметр 19 мм. Радиус кривизны 14.5 мм. Толщина 3.5 мм. Сколы меньше 0.4 мм.

Частота резонанса (ГГц) Ширина полосы (МГц) Добротность

34.04 0.7 49000

35.38 1.3 27000

35.82 1.8 20000

36.84 2.0 18000

37.17 1.2 31000

Частота резонанса (ГГц) Ширина полосы (МГц) Добротность

37.59 1.0 38000

38.30 3.0 13000

3. Шар из лейко-сапфира Диаметр 22 мм.

Частота резонанса (ГГц) Ширина полосы (МГц) Добротность

36.16 1.0 36000

4. Шар из лейко-сапфира Диаметр 28 мм.

Частота резонанса (ГГц) Ширина полосы (МГц) Добротность

36.16 0.7 52000

5. Шар из лейко-сапфира Диаметр 22 мм.

Частота резонанса (ГГц) Ширина полосы (МГц) Добротность

37.23 0.8 47000

6. Пирамида из иттрий- алюминиевого граната Высота 21.2 мм. Основание – правильный восьмиугольник. Диаметр описанной окружности 34.1 мм. Диаметр вписанной окружности 31.5 мм. Наклон граней: первого яруса – 80 градусов, второго яруса – 40 градусов. Грани второго яруса повернуты на 22.5 градуса. Погрешность по углу восьмиугольника 1 .3 угловые минуты.

Частота резонанса (ГГц) Ширина полосы (МГц) Добротность

25.92 16 2200

7. Яйцо из иттрий- алюминиевого граната Максимальный размер 29.3 мм. Диаметр экватора 21 мм. Возбуждение вдоль экватора

Частота резонанса (ГГц) Ширина полосы (МГц) Добротность

Частота резонанса (ГГц) Ширина полосы (МГц) Добротность

31.18 2.0 16000

34.75 2.0 17000

35.94 2.5 14000

36.10 2.0 18000

36.26 2.0 18000

37.11 1.5 25000

37.29 2.0 17000

37.57 2.0 19000

37.62 1.6 24000

37.89 1.8 21000

Перейти на страницу: 1 2 3 4 5 6 7

Немного больше о технологиях >>>

Методология науки
«Эксперимент не может подтвердить теорию,он может лишь опровергнуть ее». А.Эйнштейн Во все времена задача науки была неизменна - изучение мироздания с целью выявления существующих закономерностей, что само по себе уже предполагает существование таких закономерностей и поз ...

Колумбия ожидание мира
«Мы — колумбийцы — выжили в таких трудных географических условиях — и горы, и болота. Мы не сломались, несмотря на десятилетия непрекращающейся войны. Мы продолжаем работать и радоваться жизни. Война — это как явление природы, как ураган, ему нужно сопротивляться!» Не знаю, к ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512