Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Эволюция концепции доказательства

Общеизвестное

Доказательство - рассуждение с целью обоснования истинности некоторого утверждения. Доказательство ассоциируется с математикой, а школьники связывают его прежде всего с геометрией.

Истинно ли доказанное утверждение? - Конечно, что за вопрос…

Арифметика без доказательств

Счет и запись результатов

Нам все, что больше трех, требуется сосчитать: предметы или звуки. Непосредственное, без тренировки, пространственное и временное распознавание числа объектов простирается не далее 4 или 5. Это врожденное свойство: "нейронное" изображение чисел от 1 до 3 в "единичной" системе счисления (вертикальными или горизонтальными черточками) совпадает практически во всех культурах, различия в изображении чисел начинаются с числа 4.

Нейронного запаса человеку оказалось мало, и он пополнил его. Сначала появился счет с применением стандартных счетных предметов: пальцев, камешков или раковин. Затем стали употреблять знаки: узелки, черточки, зарубки. Для уже привычных групп счетных знаков возникли знаки языка - числительные. Сохранился рудимент этой эпохи в китайском языке в виде различных счетных слов, обязательных при счете объектов определенной природы - круглых, плоских, войн и революций и т.п.

Римляне надели камешки (calculus - отсюда калькулятор) на стержни - получились счеты. Счеты неявно ввели позиционную систему счисления. Нуль в этой системе не требовал изображения и не мог его иметь. Для записи результатов счета потребовались средства письменности - иероглифы и буквы алфавита. В Древнем Египте иероглифами записывали числа до десяти миллионов.

Греки использовали для записи результатов астрономических вычислений смешанную систему: для целой части - собственную десятичную алфавитную непозиционную, для дробной части - 60-ричную вавилонскую позиционную. Письменные операции над такими числами были нелегким делом.

Десятичную систему с нулем изобрели в Индии (VI век); ее заимствовали арабы, а у арабов - европейцы, которые до того пользовались римскими цифрами. Арабские цифры и десятичные дроби были открыты европейцами уже после того, как они открыли Америку. Операции над цифровыми символами на бумаге стали проще, но и до сих пор трудны, а с появлением калькуляторов стали разве лишь непопулярным интеллектуальным спортом.

Кто может сегодня извлечь квадратный корень без калькулятора?

Откуда взялась 60-ричная система счисления?

Изображения чисел и средства выполнения операций над числами дают работающую языковую модель - теорию. Разумеется, шесть тысяч лет тому назад наши предки были "заняты делом", а не "теориями". Тем не менее, они создали арифметику - теорию, оказавшуюся более эффективным инструментом, нежели врожденная нейронная модель счета. Арифметика - квант надбиологической эволюции, элемент культуры.

Формула

Теория может работать не только прямо, она может обеспечивать и "обратный ход". Например, исследование уравнения a + x = b. Разность b - a становится решением уравнения.

Важнейшим вкладом в математическую науку и практику стала формула - точное формальное предписание, определяющее преобразование одного языкового объекта в другой.

Формулу объявляли и иногда поясняли; о доказательстве не было и речи. Для геометрических формул приводили поясняющий чертеж (иногда с надписью "Смотри!").

Формула может быть словесной, геометрической, знаковой. Типовой пример - тоже формула. Формула до сих пор господствует в школе и в жизни и для многих является вершиной абстракции.

Переход к формулам - квант эволюции. Формулы превратили проблемы в задачи, а задачи в упражнения (для знающих людей). Количество решаемых и решенных арифметических задач - объектов предыдущего уровня - стало стремительно увеличиваться, а деятельность на этом уровне стала рутинной. Социальный престиж решателей задач снизился, но зато их количество возросло. Умельцы, решавшие задачи "доформульными" средствами, быстро "вымирали". Изобретатели формул оставались в меньшинстве, но в выигрыше.

Перейти на страницу: 1 2 3 4 5 6

Немного больше о технологиях >>>

Преобразователь разности давлений Сапфир-22ДД
Описание контура. Назначение. Технические данные. Устройство и работа. Техническое обслуживание. Монтаж прибора. Настройка и проверка. Основные неисправности. Техника безопасности. Сапфир-22ДД-Ex (датчик расхода) В химической промышленности комплексной механизац ...

Система качественных показателей для оценки достижения идеальности ТС
Общая структура Технической Системы: ЗАТРАТЫ (вход) - ТС (процессор) - ГПФ (выход) Идеал ТС: Достижение ГПФ при сумме затрат стремящейся к нулю. ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512