Эволюция концепции доказательства
Греки полагали, что утверждения математики абсолютно точны и достоверны, тогда как данные опытного знания приблизительны, обманчивы и недостоверны: даже равенство двух отрезков может быть доказано не измерением, а рассуждением. "Приближенными вычислениями стыдно заниматься свободному человеку, они - удел раба".
"При помощи математики очищается и получает новую жизненную силу орган души, в то время как другие занятия уничтожают его и лишают способности видеть, тогда как он значительно более ценен, чем тысяча глаз, ибо только им одним может быть обнаружена истина". Платон
Греки использовали в доказательствах только геометрически наглядные средства, а не буквенные символы. Поразительно, что в рамках столь трудной геометрической алгебры им удалось получить так много результатов. В Новое время Ньютон следовал греческой традиции, а Лейбниц - нет.
Математический язык
Величины в геометрии отличали от чисел в арифметике: величины именовали длинами, квадратами и кубами и использовали как именованные. Алгебраическая буквенная символика возникла в арифметической алгебре из стандартных (и сокращенных) словесных обозначений. Языки геометрии и арифметической алгебры существовали параллельно.
Декарт (1596 - 1650) построил над языками геометрической и арифметической алгебры новый язык - алгебраический. Синтаксис нового языка похож на синтаксис языка арифметической алгебры, семантика - на семантику языка геометрической алгебры.
Декарт превратил процесс в объект: отношение величин (процесс) стало рациональным или иррациональным числом (объектом). Тем самым Декарт совершил квантовый эволюционный переход к абстрактному понятию числа, переход, оказавшийся не под силу грекам. Введенное Декартом понятие числа было языковым конструктом, а не пространственным образом. Декарт принципиально изменил содержание доказательства: отныне геометрическим образам осталась роль иллюстраций, они перестали быть средствами доказательства.
Буквенная символика открыла вход в математику поверх барьеров геометрической алгебры и словесных обозначений. Книгопечатание окончательно сделало математику доступной всей массе образованных людей. Стали обычным делом публичные состязания в доказательствах.
Через полвека благодаря Декарту Лейбниц и Ньютон совершили следующий квантовый переход.
Математическое доказательство в Новое время
Ньютон вывел законы Кеплера из закона всемирного тяготения и трех законов движения. Математическое доказательство привело к открытию закона природы. Ньютон пользовался геометрическим языком, и обозначения его "Начал" не повлияли на математическую технологию. Предложенные Лейбницем эффективные обозначения открыли поле деятельности, на котором за триста лет было доказано невероятное количество теорем в созданных на основе новых понятий производной и интеграла многочисленных новых отраслях математики.
Ни отцы-основатели, ни их последователи не могли обосновать свои результаты, оправдывали их только приносимой ими удачей. Вакханалия использования нечетких понятий и методов приводила к неверным результатам, спорам и сомнениям. Выдающимся источником неприятностей была теория пределов с ее свободным обращением с бесконечностью. Блестяще выразился о новой математике Вольтер: "Искусство считать и точно измерять то, существование чего непостижимо для разума". Все попытки выйти из положения, даже предпринятые Эйлером и Лагранжем, потерпели полную неудачу. Внутренняя дисциплина в математике к середине XIX века упала настолько, что Кэли, приведя формулировку теоремы для квадратных матриц и проверив ее для матриц 2х2, не счел "необходимым обременять себя формальным доказательством теоремы в общем случае матрицы любого порядка" и призвал просто поверить ему.
Трудности коренились в том, что новые понятия находились на более высоком уровне абстракции. Грекам было легче, их понятия были ближе к (презираемому!) опыту, а те понятия, которые доставили столько волнений в Новое время, хитроумные греки обходили. Новые понятия были уже не обобщением опыта, а созданием разума, лишенным привычной опоры в наглядности. Язык формул обладал не только притягательной, но и производительной силой.
Немного больше о технологиях >>>
Разработка интегрированного стартер-генератора на основе вентильно-индукторной машины
Рассматриваются
принципы работы стартер-генераторного устройства автономного объекта на базе
вентильно-индукторной машины. Проведено исследование режимов работы
вентильно-индукторного стартер-генератора на основе математического
моделирования. Предложено решение проблем расшире ...
О побочном событии в лабораторном эксперименте
В
исследовании частных приложений теории относительности экспериментальная физика
значительно опережает теоретическую, которой все чаще приходится объяснять
причины расхождения своих предсказаний с результатами практического опыта.
Такое
взаимоотношение теории и эксперимента ...