Подводные камни математики
Упомянут сугубо линейный (казалось бы) закон Архимеда. Но жир от рук экспериментатора, сделал поверхность иглы несмачиваемой, к закону Архимеда добавились силы поверхностного натяжения жидкости, и мы получили плавающую монолитную стальную деталь! Силы поверхностного натяжения действуют и на крупную стальную болванку, брошенную в воду, но при больших размерах болванки влиянием этих сил можно пренебречь – это другая сторона „параметрической локальности” законов!
Нередки ситуации, когда естественнонаучный закон удаётся использовать лишь в крайне узкой зоне параметров. Например, все газовые законы оказываются применимы к парам во-ды лишь значительно выше критической температуры 374˚С, но гораздо ниже температуры диссоциации молекул воды на отдельные атомы. Кроме того, для применения газовых законов к парам воды требуется равенство нулю ультрафиолетового облучения, вызывающего диссоциацию молекул. Такие примеры можно приводить без конца. Скажем, действие внут-риядерных сил ограничено в пространстве потому, что их переносчики – мезоны – имеют малое время жизни, и не успевают значительно удалиться от нуклонов ядра.
К счастью, в практических ситуациях легко избежать ошибок из-за выхода закона за пределы свойственной ему зоны параметров. Хуже обстоит дело с теоретическими изысканиями, где обнаружить ошибки такого рода далеко не просто.
Успехи математики вызвали у некоторых учёных специфическую аномалию – синдром „математического ослепления”. Математическое описание объектов они стали ставить неизмеримо выше собственно свойств объектов, проявляющихся в тех или иных феноменах. По их мнению, если феномен противоречит формулам, то нечего об этом феномене и говорить! К сожалению, такая ситуация не выдумана. А на замечание о недопустимости подобной позиции, о бесполезности подобной математики оппоненты в один голос отвечают железобетонной фразой, что, мол, „каждая наука тем в большей степени наука, чем больше в ней математики!”
Да. Но, ведь, смотря какой математики! Конечно, хорошо иметь удобное математическое описание, правильно и лаконично отображающее рассматриваемый объект. Но какой толк от математического описания, лишь маскирующего наше незнание истинных свойств и истинной природы объекта? Какой толк от искусственно притянутого описания, расходящегося с отдельными фактами?!
Математика начинается с абстракции. В основе самого талантливого математического описания всегда лежит идеализация, между описываемым объектом и формулами всегда остаётся ряд расхождений, неполных соответствий. В реальной жизни, куда математики выдают свои формулы для использования, к абстракциям приходится относиться очень осторожно. При современном уровне развития, когда нас окружили исключительно сложные системы, жизнь, как правило, требует скрупулёзного учёта всех подробностей, что противоречит „невинному” абстрагированию.
Одной из главных задач математики является создание формального языка для точного и лаконичного описания закономерностей Природы. Математики убеждены, что их наука отлично выполняет эту миссию. Однако, при том, что подавляющее большинство законов Природы реально применимо лишь в ограниченной области параметров, формальный аппарат математики не только не учитывает эту важнейшую особенность, но ещё и маскирует её, искажает действительность обманчиво „всеобъемлющими” формулами, представляемыми „в общем виде”. В итоге, учёные, сплошь и рядом не замечающие подвоха „всеобъемлющих” формул, часто выходят за пределы диапазонов действия тех или иных законов. Хотя матема-тика могла бы, и должна была бы защитить инженера и учёного от болезненных ошибок такого рода, она эту функцию совершенно не выполняет! Особенно тревожная ситуация воз-никает при учащающихся разработках гибридных, философско-математических моделей.
Немного больше о технологиях >>>
Ошибка Лоренца
В
физике часто используются очевидные положения, которые представляются
достаточно ясными и не требуют последующего обоснования. Это не всегда оправдано,
поскольку есть случаи, приводящие к парадоксальным следствиям. Тогда приходится
возвращаться к анализу «очевидных положений» ...
Может ли энергия быть отрицательной
подробно не рассматривался. Считалось, что
он слишком сложен для учеников средней школы. В то же время «по умолчанию»
ученики (да нередко и учителя) полагают, что энергия может быть только
положительной величиной. Это приводит к недоразумениям при анализе
преобразования энергии ...