Подводные камни математики
2. После получения входного сигнала, переводящего логический элемент молекулярной электроники на более высокий энергетический уровень, элемент не может долго оставаться на таком уровне. Через стотысячные доли секунды он возвращается в исходное состояние с низкой энергией, что принципиально отличает его от ламповых или полупроводниковых триггеров традиционной электроники.
3. Переход молекулярных логических элементов с высокого энергетического уровня на низкий не только нельзя отодвинуть на произвольное время, но нельзя и приблизить по своему желанию. Он неуправляем и, в известной степени, непредсказуем (нестабилен) по времени, что нарушает привычную логику действия информационных систем.
4. В отличие от кристаллов полупроводниковой микроэлектроники, элементы молекулярной электроники, из-за сложного химического состава, легко присоединяют, а затем прочно удерживают атомы посторонних примесей, выводящие их из строя. Кроме того, из-за малых размеров, эти элементы очень чувствительны к радиационному фону. Один квант ионизи-рующего излучения способен вызвать множественные обратимые и необратимые нарушения в схеме молекулярной электроники. Поэтому нужно заранее рассчитывать на присутствие в информационной системе большого количества хаотически расположенных неисправных элементов.
5. Нелегко создать микроманипулятор, способный захватить одну молекулу, правильно сориентировать её в пространстве и точно установить в заданное место молекулярной схемы. Но даже если такой манипулятор появится, изготовление молекулярно-электронной системы с его помощью, учитывая ожидаемые триллионные количества схемотехнических элементов, длилось бы веками. Поэтому в молекулярной электронике возможны лишь технологии, при которых одновременно монтируются миллионы и миллиарды однотипных логических элементов, что далеко от схем с традиционной архитектурой.
Трудности построения информационных систем из элементов молекулярной электроники имеют фундаментальный характер. При переходе из зоны „средних измерений” в микромир, при уменьшении элементов схемы до размеров атомов и молекул законы физики теряют привычный чёткий характер и приобретают принципиальную неопределённость. Здесь одно и то же событие, не нарушая законов физики, может происходить или не происходить, здесь вполне исправный элемент схемотехники может срабатывать или не срабатывать. В результате, остаётся справедливой давняя констатация, что „детальные предложения по схемотех-нике, основанной на молекулярных элементах . отсутствуют; не представляется . возмож-ным создать проект . хотя бы простейшего молекулярного микроэлектронного изделия . ” [Рамбиди, Замалин, 1986].
Таким образом, не только научные исследования, но и практика инженерных разработок столкнулась с болезненным провалом попыток автоматического переноса идеологии одной размерной области в другую область.
Наибольшее фиаско произошло в космологии, где очень трудно проверять гипотезы, отчего опасное манипулирование формальными соотношениями приобрело особый размах. Авторы гипотезы Большого Взрыва попытались перенести из квантового мира на Космос идеологию спонтанного возникновения виртуальных частиц, идеологию отсутствия привычного детерминизма, идеологию неопределённости и прочих удивительных эффектов субатомного диапазона параметров. Положения квантовой теории – так называемые нулевые флюктуации вакуума и спонтанное возникновение виртуальных частиц – они трансформировали в гипотезу о столь же внезапном возникновении всей Вселенной! Хотя квантовая теория говорит об очень кратковременных и ничтожных по амплитуде процессах (в пределах постоянной Планка, неопределённости Гейзенберга), о возникновении частиц на столь короткое время, что их нельзя зарегистрировать приборами (отчего они названы виртуальными), сторонники Большого Взрыва распространили эти представления на космические раз-меры и на интервалы времени в миллиарды лет. Вина за это лежит не столько на доверчивых астрофизиках, сколько на математиках – формальный аппарат математики не содержит сдерживающих факторов, способных предотвратить использование физических законов за границами разрешённых зон параметров. Больше того, он маскирует подобные случаи.
Немного больше о технологиях >>>
Ошибка Лоренца
В
физике часто используются очевидные положения, которые представляются
достаточно ясными и не требуют последующего обоснования. Это не всегда оправдано,
поскольку есть случаи, приводящие к парадоксальным следствиям. Тогда приходится
возвращаться к анализу «очевидных положений» ...
Опыты Саньяка, Майкельсона – Гаэля, Миллера
Анализ
результатов опытов Эйхенвальда и Вильсона дает основания утверждать, что, по
крайней мере, в электродинамике движение относительно эфира всегда
сопровождается вполне наблюдаемыми явлениями, соответствующими скорости такого
движения. Не лишенным смысла поэтому оказывается ...