Подводные камни математики
* * *
Есть ещё одна существенная претензия к математике. На протяжении многих столетий математика выполняла важную роль единого языка разных научных дисциплин. Но в 20-м веке её безудержное, неуправляемое развитие перечеркнуло эту функцию. Возникло множество узко специализированных разделов математики, не известных представителям других дисциплин. Вместо того, чтобы быть удобным и надёжным инструментом науки, подчиняющимся, как всякие инструменты, унификации и стандартизации, математика переродилась в некое подобие ничем не ограниченной умственной игры (хотя и игры сейчас старательно стандартизованы). В результате, выпускник одного университетского факультета не знает значительной части математического аппарата, преподаваемого на другом факультете. Возникло подобие вавилонского столпотворения, когда люди заговорили на разных языках и потому не смогли решать общую задачу.
Возникла необходимость возрождения утраченной функции математики – функции общего языка науки и инженерных дисциплин, удобного и понятного средства обмена точными, компактными данными между специалистами разных профилей. Решение этой задачи возможно только с учётом сокращения ассортимента и дальнейшего совершенствования ис-пользуемых математических средств.
Легко представить себе, что требование широкой унификации и стандартизации математического аппарата вызовет бурю гнева со стороны математиков, потому что ведёт к значительному усложнению их жизни. Нужно провести ревизию всего созданного, отобрать необходимый и достаточный минимум математических средств, обеспечивающих потребности науки и практики, ввести этот минимум в программы ВУЗов всех специальностей, создать международный координационный Центр для выработки общих рекомендаций и контроля их выполнения и т.д.
* * *
Ситуацию можно подытожить следующим образом:
Большинство законов Природы обладает параметрической локальностью – действует в ограниченных зонах параметров, вне которых они теряют силу или искажаются наложением других закономерностей. Математический аппарат маскирует эту особенность законов, стимулируя их ошибочное применение за рамками допустимых параметров.
Особую опасность влечёт за собой синтез математических и философских построений, поскольку математические формулы не учитывают философский принцип перехода количества в качество у границ допустимых зон использования конкретных законов.
Практика показала также опасность „математического гипноза”, при котором красота математических построений воспринимается как свидетельство их абсолютной достоверности, хотя никак не связана с главнейшем – со степенью соответствия математического описания реальным описываемым объектам.
Одной из важнейших задач развития математики должно стать возрождение утраченной функции – использования математики в качестве удобного, понятного и всеобщего языка общения между разными научными и инженерными дисциплинами.
Немного больше о технологиях >>>
Опыты Араго и теория Френеля
Современная
наука не отрицает истинности Френелевской формулы частичного увлечения эфира
движущимися телами (средами) – «...и сейчас одного из наиболее важных явлений в
движущихся телах» [1]. В современной теории относительности формула Френеля
рассматривается как частный случа ...
Обзор биологических наномоторов
Многие
молекулярные наномашины, давно работающие в живых организмах, могут послужить
первыми строительными кирпичиками будущих нанороботов. Причем таких
"моторов" в природе достаточно много. В этой статье мы расскажем об
основных биомоторах и их возможном применении в ...