Миллисекундная синхронизация экстремумов ЭКоГ, ак свидетельство смысловых квантов ЭЭГ
В опытах на 7 морских свинках, обездвиженных тубокурарином, показано, что миллисекундное (2мс интервал) совпадение экстремумов ЭКоГ в различных отведениях есть закономерное и регулярное явление для бодрствующего мозга.
Полученные результаты согласуются с концепцией дискретно-волнового механизма нервной интеграции и ее приложением к ЭЭГ. Эта концепция содержит представление об иерархии смысловых квантов ЭЭГ , по которому квазиритмические колебания - "волны" ЭЭГ есть ее энергетический компонент или же колебания возбудимости, тогда как информационным компонентом ЭЭГ являются дискретные "пики" (экстремумы), отображающие апериодические эпизоды формирования миллисекундных интегративных нейронных макроансамблей в коре мозга. В частности показано, что кроме периодических эпизодов миллисекундной синхронизации экстремумов ЭкоГ (ЭМС), которые могут быть разделены интервалами, соответствующими гамма, бета, сигма, альфа, дельта диапазонам ЭЭГ, ее "волнам", регулярно имеет место апериодическое следование ЭМС. Визуальное отслеживание записей ЭКоГ с должной временной разверткой показало миллисекундную синхронизацию именно "пиков", экстремумов ЭКоГ, но не ее "волн" - например, гамма осцилляций.
Показано, в соответствие с нашим концептуальным походом, что позитивных ЭМС , рассматриваемых по аналогии с волнами первичного ответа как тормозные, обнаруживается больше, чем негативных - возбудительных.
Показано, что внутрианализаторные взаимодействия реализуются достоверно большим числом ЭМС, чем внеанализаторные. Это соответствует нашему представлению об иерархии смысловых квантов ЭЭГ.
Проанализированы ближайшие проблемы исследования смысловых квантов ЭЭГ как метода адекватного шкалирования ЭЭГ с учетом нелинейности биологического времени.
Теоретически и на базе косвенных экспериментальных свидетельств была обоснована идея [4-14], что в ЭЭГ отображается иерархия циклически повторяющихся квантов функционирования полярных нервных модулей разного уровня сложности, которые образуют вложенную иерархию и вместе представляют собою мозг.
Интегрированное функционирование модулей порождает все более объемные временные функциональные ансамбли, что отображается в поэтапной миллисекундной синхронизации нейронных спайков. Такими временными макроансамблями нейронов кодируются все более сложные акты деятельности мозга.
Каждый временной макроансамбль служит для кодирования результатов нервной интеграции (на том или ином уровне), достигаемых в результате акта (той или иной сложности) функционирования соответствующей нервной структуры.
Синхронизация активности во временном макроансамбле нейронов порождает соответствующие колебания в ЭЭГ.
Обосновано [6,8,10,13,14], что каждый смысловой квант должен начинаться с кратковременного синхронного торможения соответствующих модулей. Это обусловлено необходимостью накопления энергии структурных напряжений для осуществления акта нервной интеграции, и также может отображать "обнуление" нервных устройств перед каждым актом деятельности. Далее развертывается процесс нервной интеграции в виде характерной последовательности эпизодов миллисекундной синхронизации нервных спайков в больших ансамблях нейронов, т.е. - эпизодов синхронизированного возбуждения, каждый из которых сопровождается эпизодом синхронизированного торможения. Это означает, что число тормозных эпизодов миллисекундной синхронизации должно превышать число возбудительных ЭМС .
Мы предположили, что колебания ЭЭГ, связанные с торможением и возбуждением должны быть разнонаправлены так же, как и в фазах первичного ответа: торможению соответствует позитивность, а возбуждению - негативность.
Немного больше о технологиях >>>
Механика. Античность и эллинский период
Исторический экскурс в прошлое физики, вне
всякого сомнения, позволяет лучше понять логику формирования и развития этой
науки, приведшую к современному ее состоянию. Нам представляется, что понимание
причины возникновения физики, ее изначальных целей, знакомство с этапами ее
ра ...
Оптимизация структуры стохастического графа c переменной интенсивностью выполнения работ
Задача
распределения ресурсов (нескладируемого типа) на cтохастических сетях (параллельные
проекты) сформулирована как обусловленная переменной структурой графа.
Предложенный метод решения обеспечивает получение экстремального графа для
случая, когда каждая работа многопроектно ...