Апология Бесконечности
-начальный класс, он же – счетное множество N=0,1,2, .,N-1 всех конечных чисел. Его кардинал N называется конечным числом Кагота. Кагот – герой повествования чукотского писателя Юрия Рытхэу [15] (Кагот искал числа, которые уже не конечные, но еще и не бесконечные, и считал, что тот, кто найдет их, будет счастлив и все узнает). О предельном числе Nздесь говорится, что оно не существует в канторовском смысле, то есть в том смысле, в каком говорится в известной теории множеств о несуществовании наибольшей бесконечности в ряде W;
-промежуточный класс чисел от N,N+1,N+2, . до 2N-1, который представляет собой числа, уже не являющиеся конечными, но и не являющиеся еще бесконечными. Называются они числами Кагота;
-класс малых бесконечных чисел от ω-=2N,ω-+1,ω-+2, . до ω0-1. Наименьшее бесконечное число ω- называется бесконечным числом Кагота. О его несуществовании говорится в том же смысле, что и о несуществовании числа N;
-начальное бесконечное число ω=ω0=∞/e. Оно является онтологическим основанием всех бесконечных кардинальных чисел – и больших ω1,ω2, ., и малых ω-1,ω-2, .;
-класс больших бесконечных чисел от ω+1,ω+2, . до наибольшего кардинала ω+, о несуществовании которого говорится то же, что и о несуществовании чисел N и ω-.
Из описания ряда Ω видно, что конечные числа связаны с бесконечными числами соотношением ω-=2N, которое называется аксиомой конечного-бесконечного, или гипотезой Кагота.
Если отвлечься от концептуальных противоречий ряда W, то можно отметить следующие его сходства и различия с бесконечным рядом Ω. Первое: все конечные числа в обоих рядах представляют собой, в общем-то, одно и то же счетное множество N, но в ряде W оно постулируется бесконечным с мощностью ω, а в ряде Ω оно обосновывается как конечное множество с мощностью N. Кроме этого, число ω в ряде W не имеет предшественника, а число N в ряде Ω имеет в качестве предшественника число N-1 (число N– это (L+1)-разрядное двоичное число 10 .00, а число N-1– это L-разрядное двоичное число 1 .11). Второе: все числа в ряде W, следующие за конечными числами и меньшие первого несчетного множества ω1, являются счетными трансфинитными числами и характеризуют все счетные вполне упорядоченные множества, то есть это счетно бесконечные числа, составляющие вместе с конечными числами несчетное множество мощности ω1=2ω [12, с. 69-70]; в ряде же Ω за конечными числами следует класс чисел Кагота, уже не конечных, но еще и не бесконечных, которые вместе с конечными числами составляют наименьшее бесконечное множество ω-=2N. В некотором смысле формально, а именно в том смысле, что если числу ω из W сопоставляется число N из Ω, а числу ω1 из ряда W– число ω- из Ω, то начальная часть ряда W, имеющая мощность и представляющая собой знаковую конструкцию (6), есть такая же начальная часть ряда Ω, которая, однако, включает в себя наряду с конечными числами числа Кагота, не являющиеся еще бесконечными, но уже и не конечные, и имеет (предельную) наименьшую бесконечную мощность ω-. Конечно, это так в том смысле, что не имеет особого значения – сколько противоречий имеет ряд W – столько же или на одно больше. Дальше в ряде порядковых чисел W идут просто трансфинитные числа, имеющие мощности ω1,ω2, . . В ряде же Ω за числами Кагота идут сначала числа малых бесконечных мощностей ω-, .,ω-2,ω-1, затем – начальное бесконечное число ω0, а за ним – числа мощности ω0, и только потом уже идут числа больших бесконечных мощностей ω1,ω2, .,ω+. как видим, ряд W содержит в себе в качестве подмножества лестницу кардиналов ω,ω1,ω2, ., которая имеет начальный кардинал и не имеет последнего кардинала, ряд же Ω имеет существенно иную лестницу кардиналов .,ω-2,ω-1,ω0,ω1, ω2, ., которая уже не имеет не только последнего кардинала, но и первого, что показывает, что множество трансфинитных чисел становится более интересным и богатым.
Таким образом, несмотря ни на какие противоречия, бесконечность во всех своих ипостасях была, есть и будет. Аристотель говорил: "Infinitum Actu Non Datur!" (актуальная бесконечность не существует!), мы же говорим: "Infinitum Actu Datur!" (актуальная бесконечность существует!).
Немного больше о технологиях >>>
Механика. Античность и эллинский период
Исторический экскурс в прошлое физики, вне
всякого сомнения, позволяет лучше понять логику формирования и развития этой
науки, приведшую к современному ее состоянию. Нам представляется, что понимание
причины возникновения физики, ее изначальных целей, знакомство с этапами ее
ра ...
Применение гидролокатора бокового обзора для прокладки и контроля положения подводного трубопровода
При эксплуатации подводных участков нефте- и
газопроводов необходимы регулярные технические инспекции для контроля состояния
тела трубы и ее опор. Предлагаемая технология обследования подводного
трубопровода с использованием гидролокатора бокового обзора характеризуется
высокой ...