Апология Бесконечности
-начальный класс, он же – счетное множество N=0,1,2, .,N-1 всех конечных чисел. Его кардинал N называется конечным числом Кагота. Кагот – герой повествования чукотского писателя Юрия Рытхэу [15] (Кагот искал числа, которые уже не конечные, но еще и не бесконечные, и считал, что тот, кто найдет их, будет счастлив и все узнает). О предельном числе Nздесь говорится, что оно не существует в канторовском смысле, то есть в том смысле, в каком говорится в известной теории множеств о несуществовании наибольшей бесконечности в ряде W;
-промежуточный класс чисел от N,N+1,N+2, . до 2N-1, который представляет собой числа, уже не являющиеся конечными, но и не являющиеся еще бесконечными. Называются они числами Кагота;
-класс малых бесконечных чисел от ω-=2N,ω-+1,ω-+2, . до ω0-1. Наименьшее бесконечное число ω- называется бесконечным числом Кагота. О его несуществовании говорится в том же смысле, что и о несуществовании числа N;
-начальное бесконечное число ω=ω0=∞/e. Оно является онтологическим основанием всех бесконечных кардинальных чисел – и больших ω1,ω2, ., и малых ω-1,ω-2, .;
-класс больших бесконечных чисел от ω+1,ω+2, . до наибольшего кардинала ω+, о несуществовании которого говорится то же, что и о несуществовании чисел N и ω-.
Из описания ряда Ω видно, что конечные числа связаны с бесконечными числами соотношением ω-=2N, которое называется аксиомой конечного-бесконечного, или гипотезой Кагота.
Если отвлечься от концептуальных противоречий ряда W, то можно отметить следующие его сходства и различия с бесконечным рядом Ω. Первое: все конечные числа в обоих рядах представляют собой, в общем-то, одно и то же счетное множество N, но в ряде W оно постулируется бесконечным с мощностью ω, а в ряде Ω оно обосновывается как конечное множество с мощностью N. Кроме этого, число ω в ряде W не имеет предшественника, а число N в ряде Ω имеет в качестве предшественника число N-1 (число N– это (L+1)-разрядное двоичное число 10 .00, а число N-1– это L-разрядное двоичное число 1 .11). Второе: все числа в ряде W, следующие за конечными числами и меньшие первого несчетного множества ω1, являются счетными трансфинитными числами и характеризуют все счетные вполне упорядоченные множества, то есть это счетно бесконечные числа, составляющие вместе с конечными числами несчетное множество мощности ω1=2ω [12, с. 69-70]; в ряде же Ω за конечными числами следует класс чисел Кагота, уже не конечных, но еще и не бесконечных, которые вместе с конечными числами составляют наименьшее бесконечное множество ω-=2N. В некотором смысле формально, а именно в том смысле, что если числу ω из W сопоставляется число N из Ω, а числу ω1 из ряда W– число ω- из Ω, то начальная часть ряда W, имеющая мощность и представляющая собой знаковую конструкцию (6), есть такая же начальная часть ряда Ω, которая, однако, включает в себя наряду с конечными числами числа Кагота, не являющиеся еще бесконечными, но уже и не конечные, и имеет (предельную) наименьшую бесконечную мощность ω-. Конечно, это так в том смысле, что не имеет особого значения – сколько противоречий имеет ряд W – столько же или на одно больше. Дальше в ряде порядковых чисел W идут просто трансфинитные числа, имеющие мощности ω1,ω2, . . В ряде же Ω за числами Кагота идут сначала числа малых бесконечных мощностей ω-, .,ω-2,ω-1, затем – начальное бесконечное число ω0, а за ним – числа мощности ω0, и только потом уже идут числа больших бесконечных мощностей ω1,ω2, .,ω+. как видим, ряд W содержит в себе в качестве подмножества лестницу кардиналов ω,ω1,ω2, ., которая имеет начальный кардинал и не имеет последнего кардинала, ряд же Ω имеет существенно иную лестницу кардиналов .,ω-2,ω-1,ω0,ω1, ω2, ., которая уже не имеет не только последнего кардинала, но и первого, что показывает, что множество трансфинитных чисел становится более интересным и богатым.
Таким образом, несмотря ни на какие противоречия, бесконечность во всех своих ипостасях была, есть и будет. Аристотель говорил: "Infinitum Actu Non Datur!" (актуальная бесконечность не существует!), мы же говорим: "Infinitum Actu Datur!" (актуальная бесконечность существует!).
Немного больше о технологиях >>>
Опыты Саньяка, Майкельсона – Гаэля, Миллера
Анализ
результатов опытов Эйхенвальда и Вильсона дает основания утверждать, что, по
крайней мере, в электродинамике движение относительно эфира всегда
сопровождается вполне наблюдаемыми явлениями, соответствующими скорости такого
движения. Не лишенным смысла поэтому оказывается ...
Обобщенный принцип наименьшего действия
Введены
континуально многозначные функции, позволяющие адекватно описывать физические
задачи. Показано их отличие от разрывных функций. Сформулирована и решена
вариационная задача для функционалов с разрывным интегрантом, зависящих от
линейных интегральных операторов, действующ ...