Апология Бесконечности
таким образом, никакого (1–1)-соответствия между счетной конструкцией (5) и несчетной конструкцией (6) нет и быть не может. Соответственно нет и быть не может никакой речи о сведении бесконечного к конечному, что пытался сделать Зенкин.
Из всего вышесказанного следует только одно: ниспровержение канторовской теории множеств не имеет под собой никаких оснований. Противоречия? Да – в ней имеются противоречия, но их преодоление и устранение являются вполне посильными и реальными [11].
Перейдем ко второму названному нами концептуальному противоречию – фактическому отсутствию определения начальной актуальной бесконечности. Уязвимым в теории множеств является начальное бесконечное множество, в качестве которого выступает множество натуральных чисел N=0,1,2,3, .,n, . Оно называется также счетным множеством. Изучается оно как актуальное множество, имеющее мощность ω. Бесконечность ω есть наименьшая бесконечность, поскольку все числа, меньшие этой бесконечности, входят в множество N, которое включает в себя только конечные числа. Известным противоречием является тот факт, что множество N содержит только конечные числа – оно еще называется множеством всех конечных чисел – и, несмотря на это, постулируется, что оно содержит бесконечное количество ω конечных чисел. С точки зрения классической логики этого не может быть, поскольку количество чисел в множестве N должно совпадать с максимальным числом этого множества, то есть число ω, или по крайней мере число ω-1, должно входить в множество N. Но это не так – число ω не входит в ряд N, оно называется предельным, к которому стремятся числа натурального ряда, что записывают как:. Причем, в этой и многих других подобных записях имеет место нечеткость в понимании символов бесконечности. Так, запись n→∞ должна пониматься просто как фраза "n стремится к бесконечности". Равенство же предела limn трансфиниту ω вполне конкретно, хотя очевидно, что ω≠∞. Не имея предшественника (число ω-1 в теории множеств запрещено), число ω оказывается и магическим, и мистическим, и фантастическим. Вследствие этого между числом ω и всеми конечными числами N имеет место "дырка", которая одновременно может быть и "черной дырой", в которую могут улетать мириады бесконечных множеств N, и "черной антидырой", из которой можно черпать также мириады бесконечных множеств. Несмотря на всю эту экзотику, множество натуральных чисел остается неизменным по своей мощности, то есть по своему количеству элементов. Такое положение вещей находится в явном противоречии с классической логикой, с ее принципом "часть не может быть равна целому". Это, наверное, и побудило Г. Кантора и Р. Дедекинда ввести в теорию бесконечных множеств принцип "часть может быть равна целому" (этот принцип ввел в обиход еще Николай Кузанский).
Поскольку мы отказались от этого принципа, то очевидно, что надо найти определение актуальной бесконечности, отвечающее действительному положению вещей. А оно, то есть действительное положение вещей, является следующим. Во-первых, поскольку противоречия в бесконечном проистекают из-за нарушения принципов классической логики, то главным методологическим принципом в определении бесконечности должны быть принципы классической логики. Во-вторых, необходимо иметь непротиворечивое определение счетного множества. Наконец, в-третьих, надо дать четкое и ясное непротиворечивое определение начальной актуальной бесконечности.
Итак, что же представляет собой счетное множество? Является ли оно бесконечным, как это общепринято, или же оно на самом деле является конечным, хотя и неограниченным? То, что это весьма важно, видно из следующего. Если допустить, что счетное множество является конечным, то тогда снимутся все его противоречия. Во-первых, оно будет содержать не бесконечное количество ω элементов, а конечное количество N, которое, как и ω, будет предельным числом для всех конечных чисел, но не бесконечным, а конечным, причем таким непостижимо большим конечным числом, что все конечные числа n будут меньше его, то есть n<N. Во-вторых, снимется и противоречие между тем, что счетное множество содержит бесконечное количество элементов, и тем, что счетное множество не содержит бесконечных чисел.
А теперь покажем, что определение счетного множества как бесконечного множества ω является фундаментально противоречивым.
Можно, конечно, вспомнить, что счетное множество изначально определяется алгоритмом образования его элементов n с помощью самого обыкновенного счета: n=(n-1)+1. И нет никаких аргументов в пользу того, что среди элементов может найтись такой элемент, который может породить последователя n+1, имеющего бесконечно большое значение. Поэтому и говорят, что ω – это наименьшее бесконечное число, а все числа, меньшие ω, являются конечными числами. На самом деле все обстоит не так: среди чисел стандартного счетного множества можно найти и бесконечные числа.
Немного больше о технологиях >>>
Колумбия ожидание мира
«Мы — колумбийцы — выжили в таких трудных
географических условиях — и горы, и болота. Мы не сломались, несмотря на
десятилетия непрекращающейся войны. Мы продолжаем работать и радоваться жизни.
Война — это как явление природы, как ураган, ему нужно сопротивляться!»
Не знаю, к ...
Происхождение ощущений
Воспринимаемое
субъектом внутреннее состояние, не выражаемое через свойства материальных
объектов, и есть "идеальное" ощущение.
...