Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Апология Бесконечности

Но с таким заключением нельзя согласиться по двум причинам. Во-первых, отрицание бесконечности и канторовской теории множеств есть просто-напросто крайний агностицизм. Если согласиться с такой точкой зрения, то из математики надо будет выбросить многие интереснейшие и важнейшие разделы. Потеряем, если можно так сказать, бесконечно много, а найдем бесконечно мало. Во-вторых, концептуальные противоречия из теории множеств можно устранить [11]. Мы здесь кратко остановимся на устранении только тех противоречий, которые имеют отношение к разбираемому здесь противоречию между принятым в теории множеств определением бесконечного множества и диагональным методом Кантора.

Противоречия теории множеств почему-то принято называть парадоксами. Наверное, с легкой руки Б. Рассела. И еще потому, наверное, что парадоксы относят к чему-то непознанному и скрытому и поэтому их существование в теориях считают естественным. Но, в конце концов, парадоксы и противоречия должны быть разрешены и устранены из теории. Поскольку мы здесь защищаем право бесконечности на ее существование, то и разберем мы здесь только два концептуальных противоречия, имеющих непосредственное отношение к этому вопросу, хотя, конечно, концептуальных противоречий в теории множеств значительно больше. Первое из них является фундаментальным и представляет собой методологический принцип всей теории бесконечных множеств. Это – принцип "часть может быть равна целому". Второе концептуальное противоречие заключается в фактическом отсутствии определения начальной актуальной бесконечности. Рассмотрим эти противоречия по порядку.

На принципе "часть может быть равна целому" как на незыблемом фундаменте покоится аксиома бесконечности Дедекинда, эквивалентная другим определениям бесконечности (например, в книге П.С. Александрова [12, с. 21] аксиома Дедекинда доказывается как теорема). Приведем часть тех противоречий теории множеств, которые порождаются этим принципом. Одним из известных парадоксов является парадокс с расходящимися рядами. Например, знакочередующийся ряд S=1-1+1-1+ . в зависимости от группировки его членов может иметь любое значение суммы S от 0,±1,±2, . до ± ∞. И все потому, что при перегруппировке членов ряда количество отрицательных и положительных членов на основании принципа "часть может быть равна целому" может меняться самым произвольным образом. Говорят также, что подмножество четных, или нечетных, чисел натурального ряда эквивалентно всему натуральному ряду. Такой же парадоксальной является и арифметика над трансфинитными числами, в которой действуют другие, чем в конечной арифметике, правила и которые также основываются на принципе "часть может быть равна целому". Например, в трансфинитной арифметике имеют место следующие соотношения: n+ω=ω≠ω+n, 2×ω≠ω+ω=ω×2, ω=n×ω≠ω×n и др. Есть еще правила выполнения арифметических операций над кардинальными числами, отличающиеся и от правил конечной арифметики, и от правил трансфинитной арифметики. Так,

определяющее количество элементов в бесконечном множестве. А такое доказанное Кантором положение, как "число точек отрезка равно числу точек квадрата", настолько сильно повлияло на математику, что заставило в топологии отказаться от общепринятого во всем естествознании параметрического определения размерности пространств и принять на вооружение индуктивное определение размерности, которое определяет континуумы любых размерностей как множества. Все эти парадоксы никак не согласуются с классической логикой. в теории множеств с классической логикой согласуется как раз только одно – диагональный метод Кантора, поскольку в нем не задействовано противоречивое определение бесконечного множества на основе принципа "часть может быть равна целому". Поэтому если и есть основания говорить об ошибке Георга Кантора, то не относительно диагонального метода [7], а относительно введенного им в теорию множеств принципа "часть может быть равна целому", который находится в вопиющем противоречии с классической логикой. В [11] предложено отказаться в теории бесконечных множеств от принципа "часть может быть равна целому" и соответственно от определения бесконечного множества по Дедекинду. В результате в диагональном методе доказательства отношения 2ω>ω уже нельзя будет добавить в предполагаемый пересчет множества 2ω новый, "диагональный", элемент, так как это добавление согласно принципу классической логики "часть не может быть равна целому" изменит предполагаемый пересчет и превратит его в новое множество, неэквивалентное предполагаемому пересчету. Диагональный метод Кантора, таким образом, останется непоколебимым. Уйдут также из теории множеств и выше перечисленные противоречия, а в бесконечном будут действовать те же законы классической логики, что и в конечной области.

Перейти на страницу: 1 2 3 4 5 6 7

Немного больше о технологиях >>>

Экспериментальное исследование нелинейных эффектов в динамической магнитной системе
Цель нашей работы заключалась в экспериментальном исследовании физических эффектов, возникающих в системе с вращающимися постоянными магнитами [1] и изучении сопутствующих эффектов. Построенную нами экспериментальную установку будем далее по тексту называть конвертором. Вся лаб ...

Оптимизация структуры стохастического графа c переменной интенсивностью выполнения работ
Задача распределения ресурсов (нескладируемого типа) на cтохастических сетях (параллельные проекты) сформулирована как обусловленная переменной структурой графа. Предложенный метод решения обеспечивает получение экстремального графа для случая, когда каждая работа многопроектно ...

Галерея

Tехнологии прошлого

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью.

Tехнологии будущего

В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип) возрастания энтропии (хаоса) во Вселенной. technologyside@gmail.com
+7 648 434-5512