Оптимальная частотно-временная фильтрация
Рис. 2. Нормированная огибающая амплитудного спектра периодической двухимпульсной последовательности.
Огибающая спектра (рис.2) образуется произведением двух компонент: sin(p nt имп /T)/p n, постоянного для данной последовательности и обусловленного формой импульсов, и cos(p n/T)t инт , обусловленного интерференцией между одинаковыми по амплитуде, но отличающимися по фазе на угол j = 2(p n/T)t инт гармониками отдельных импульсов в парах вследствие их сдвига во времени на величину t инт (в пределах периода T/2). При изменении t инт меняются амплитуды всех гармоник. Найдем номер гармоники n0, амплитуда которой изменяется быстрее других. Дважды продифференцировав второй сомножитель по t инт и приравняв 2-ю производную нулю -cos(p n/T)t инт =0, откуда номер оптимальной гармоники
n0 = T/(2k-1)/2t 0 , k = 1,2,3, . (17)
где t инт = t 0 + D t ; D t - отклонение интервала от заданного значения t 0. Оптимальные гармоники, имеющие максимальную скорость изменения амплитуды в зависимости от D t (максимальную крутизну), имеют нулевую амплитуду. Отклонение t инт в любую сторону от t 0 приводит к резкому увеличению амплитуды гармоники, а информация о знаке D t содержится в фазе гармоники. В этом случае выделение информации о знаке D t затруднительно.
Для определения величины знака отклонения проще не выделять оптимальную гармонику n0, а измерять разность амплитуд двух гармоник n1 и n2 , расположенных по обе стороны относительно "провала" в огибающей спектра сигнала n0. На рис.2 эти гармоники выделены: n1 =n0 vD n и n2 =n0 +D n.
При увеличении интервала t инт относительно t 0 провал в спектре, соответствующий n0 при D t =0, смещается влево, к нулевой частоте, амплитуда гармоники n1 уменьшается, а n2 - увеличивается. При уменьшении t инт все получается наоборот. Для компенсации первого сомножителя в формуле (16) при дальнейшей обработке амплитуды гармоник n1 и n2 можно выровнять.
Реализация предложенного способа может осуществляться при помощи устройства, состоящего из двух узкополосных фильтров, настроенных на гармоники n1 и n2, выпрямителей и дифференциально включенного измерительного прибора. В этом случае напряжение сигнала на приборе можно представить
где q - коэффициент, зависящий от формы импульсов и затухания, вносимого первым множителем в формуле (16). При прямоугольных импульсах длительностью t имп @ T(2m-1)/2n0 , q ¦ 1.
Эту формулу можно преобразовать к виду
(18)
Учитывая, что D n<<n0, выражение для сигнала (18) можно приближенно представить
(19)
Из этой формулы следует, что чувствительность дискриминатора весьма высока. Возможность реализации высокой чувствительности, достигающей 0.001 мкс/мкА и выше, при относительно большой длительности импульсов (порядка единиц микросекунд) объясняется близостью и сравнительно небольшим номером используемых гармоник (малой величиной D n), когда изменения формы или длительности импульсов сказываются на амплитудах обеих гармоник практически одинаково.
Если на вход индикаторного прибора, кроме сигнала, поступает флюктуационный шум с дисперсией s 2ш, то дисперсия ошибки измерения отклонения s 2 t составит
(20)
Шум на индикаторном приборе формируется как разность амплитуд спектральных составляющих, выделенных неперекрывающимися фильтрами с одинаковыми полосами пропускания из входного белого шума. Мощность шума на приборе в этом случае можно представить
Немного больше о технологиях >>>
Индуцированный распад протона
Дано теоретическое обоснование новому
физическому эффекту - индуцированному распаду протона. Индуцированный распад
протона (ИРП) рассматривается как ядерная реакция нового вида, которая может
происходить только при учете особенностей фрактального строения протона.
Индуцированны ...
Классификация методических средств технического творчества
Большое внимание уделяется в последние годы
вопросам технического творчества. При этом, техническое творчество не сводят к
кружкам "умелые руки", а понимают под этим процесс поиска новых идей
и решений в различных областях человеческой деятельности, учитывающий не толь ...